УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «11» апреля 2022 г. № 928

Регистрационный № 85228-22

Лист № 1 Всего листов 7

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки поверочные АУРС-К

Назначение средства измерений

Установки поверочные АУРС-К (далее — установки) предназначены для воспроизведения объёмного расхода (далее — расхода) и измерения объёма газа при поверке и калибровке ультразвуковых, диафрагменных, ротационных, турбинных, вихревых расходомеров и счётчиков газа, в том числе с встроенной функцией приведения по температуре (термокоррекцией, термокомпенсацией)

Описание средства измерений

Принцип действия установок основан на сравнении объёма (расхода), измеренного поверяемыми средствами измерений и установкой. Установки осуществляют измерение объёма (расхода) воздуха с помощью критических сопел-

Установка АУРС-К имеет модульную конструкцию:

- модуль АУРС-К-М для определения метрологических характеристик счетчиков с максимальным расходом до 100 м³/ч (в зависимости от модификации установки);
 - модуль АУРС-К-Б для воспроизведения объёмного расхода более 25 м³/ч.

В зависимости от исполнения установка формируется из:

- одного модуля АУРС-К-М для исполнений от АУРС-К-10 до АУРС-К-100;
- двух модулей (АУРС-К-М и АУРС-К-Б) для остальных исполнений.

Установка состоит из блока задания расхода и измерения объёма воздуха.

Блок задания расхода и измерения объёма воздуха состоит из набора критических сопел, первичных преобразователей давления, перепада давления, температуры, влажности, соединительных трубопроводов и монтажных рам.

Блок обработки данных (единый для всех модулей) состоит из преобразователей цифровых и аналоговых интерфейсов, измерительных каналов давления, температуры, влажности, времени и счета импульсов, блоков питания, автоматизированного рабочего места оператора на базе персонального компьютера с предустановленным программным обеспечением (далее – ПО).

В состав приборного блока входят следующие средства измерений параметров рабочей (поверочной) среды в процессе поверки:

- *Измеритель влажности и температуры ИВТМ-7 (регистрационный номер 71394-18);
- *Датчик давления ИД-А-ЦС-К1 (регистрационный № 26818-15);

Преобразователи измерительные температуры АУРС-Т на основе платинового преобразователя Pt-1000 (диапазон от 10^{0} C до 30^{0} C, абсолютная погрешность преобразования \pm 0,2 0 C);

Преобразователи измерительные дифференциального давления AУРС-dP на основе сенсора MPX 5010DP (диапазон от 5 Па до 2000 Па, приведенная к верхнему пределу измерений погрешность преобразования \pm 1 %.

Блок задания расхода воздуха состоит из вакуумного насоса (вакуумных насосов), вакуумной (ресиверной) ёмкости и трубопроводов с запорной арматурой.

Блок задания расхода воздуха создаёт разрежение с помощью вакуумного насоса, в результате чего воздух из помещения начинает поступать через поверяемое средство измерений, а затем проходит через блок измерения объёма и расхода воздуха. На основании измеренного количества импульсов от поверяемого средства измерений или разницы конечных и начальных показаний отсчетного механизма и времени, а также измеренных значений давления, перепада давления, температуры и влажности с помощью блока обработки данных рассчитывается объём (объёмный расход) воздуха, прошедший через установку, приведенный к условиям измерений поверяемого (испытуемого) средства измерения или к стандартным условиям.

Опционально установка может быть оснащена датчиком считывания отраженного светового сигнала от зеркальной метки отсчетного механизма (при наличии) для поверки счетчиков без импульсного выхода методом «старт с ходу».

Опционально установка может быть оснащена устройством фото фиксации показаний отсчетного механизма, синхронизированного с измерителем временного интервала между стартом с окончанием измерения накопленного объема поверяемым счетчиком с визуальным съемом показаний отсчетного механизма.

Установки выпускаются с различными максимальными и минимальными значениями воспроизводимого и измеряемого объёмного расхода воздуха в зависимости от набора критических сопел.

Пломбирование установки не предусмотрено.

Заводской номер установки наносится на информационную табличку типографским способом в формате XXX.

Общий вид установок представлен на рисунках 1–2.

Рисунок 1 – общий вид установок в составе модуля АУРС-К-М с опцией считывания отраженного сигнала от зеркальной метки

Рисунок 2 — общий вид установок, состоящих из модулей АУРС-К-М

Рисунок 3 — общий вид установок в составе модулей AУРС-К-М и AУРС-К-Б

Рисунок 4 – Общий вид маркировочных табличек.

Программное обеспечение

ПО установок разделено на две части: метрологически значимую, которая включает алгоритмы обработки измеренной информации, и метрологически не значимую, используемую для визуализации полученных данных.

ПО установок защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров с помощью разграничения прав доступа пользователей, системы идентификации пользователей и пароля. Метрологические характеристики установок нормированы с учетом программного обеспечения.

Идентификационные данные метрологически значимой части ПО приведены в таблице 1

TT 1	n	
Идентификационные данные (признаки)	Значение	
1	2	
Идентификационное наименование ПО	АУРС-К.ПО	
Номер версии (идентификационный номер) программного обеспече-	Не ниже 1.10.01	
кин		
Цифровой идентификатор ПО	приведены в паспорте	
цифровой идентификатор 110	установки	
Алгоритм вычисления цифрового идентификатора программного	CRC-32	
обеспечения	CRC-32	

Уровень защиты ПО «средний» в соответствии с Р 50.2.077–2014.

Метрологические и технические характеристики

Основные метрологические и технические характеристики приведены в таблицах 2 и 3.

Таблица 2 – Метрологические характеристики

таолица 2 — метрологические характеристики	
Наименование характеристики	Значение
Максимальное значение воспроизводимого и измеряемого объёмного расхода воздуха (верхний предел измерения), м ³ /ч	1600; 1000; 650; 400; 250; 160; 100; 65; 40; 25; 16; 10
Минимальное значение воспроизводимого и измеряемого объёмного расхода воздуха (нижний предел измерения), м ³ /ч	0,25; 0,16; 0,1; 0,05; 0,04; 0,025; 0,016; 0,01; 0,006; 0,003
Доверительные границы относительной погрешности воспроизведения объема и объемного расхода при доверительной вероятности 0,95, %	±0,3
Диапазон измерений канала абсолютного давления, кПа	от 80 до 130

Наименование характеристики	Значение	
Пределы допускаемой относительной погрешности канала абсолютного давления, %	±0,2	
Диапазон измерений канала вакуумметрического давления, кПа	от 10 до 90	
Пределы допускаемой относительной погрешности канала вакуумметрического давления, %	±0,5	
Диапазон измерений каналов перепада давления, Па	от 5 до 2000	
Пределы допускаемой приведенной к верхнему пределу измерений погрешности канала перепада давления, %	±1	
Диапазон измерений каналов температуры, °С	от +10 до +30	
Пределы допускаемой абсолютной погрешности канала температуры, ${}^{0}\mathrm{C}$	± 0,2	
Диапазон измерений времени, с	от 1 до 86400	
Пределы допускаемой относительной погрешности канала измерений времени, %	± 0,01	

Таблица 3 – Основные технические характеристики

Наименование характеристики	ристики Значение	
Измеряемая среда (поверочная среда)	воздух	
Максимальное число одновременно поверяемых счётчиков, шт	7	
Параметры электрического питания: – напряжение переменного тока, В – частота переменного тока, Гц	220±22; 380±38 50±1	
Потребляемая мощность в зависимости от максимального значения воспроизводимого и измеряемого объёмного расхода воздуха, кВт, не более:		
$-$ от 10 до 40 м $^3/$ ч	5	
– от 65 до 100 м ³ /ч	10	
$-$ от 160 до 400 м 3 /ч -650 м 3 /ч	25 35	
$-630 \text{ m}^{74} -1000 \text{ m}^{3}/\text{q}$	45	
$-1600 \text{ m}^{3}/\text{q}$ $-1600 \text{ m}^{3}/\text{q}$	55	
Габаритные размеры в зависимости от максимального значения		
воспроизводимого и измеряемого объёмного расхода воздуха,		
длина×ширина×высота, мм, не более:		
– от 10 до 40 м ³ /ч	3000×1000×2000	
– от 65 до 100 м ³ /ч	3500×1200×2000	
$-$ от 160 до 1600 м 3 /ч	4000×1500×2000	

Наименование характеристики	Значение	
Масса в зависимости от максимального значения		
воспроизводимого и измеряемого объёмного расхода воздуха, кг, не более:		
– от 10 до 40 м ³ /ч	500	
– от 65 до 100 м ³ /ч	700	
$-$ от 160 до 400 м $^3/\mathrm{ч}$	900	
$-650 \text{ m}^3/\text{q}$	1200	
$-1000 \ \mathrm{m}^3/\mathrm{ч}$	1500	
$-1600 \text{ м}^3/\text{ч}$	2000	
Условия эксплуатации:		
– атмосферное давление, кПа	от 84 до 106,7	
– температура, °C	от +15 до +25	
– относительная влажность, %, не более	80	
Средний срок службы, лет	14	
Средняя наработка до первого метрологического отказа, ч	15000	

Знак утверждения типа

наносится на титульный лист паспорта и руководства по эксплуатации типографским способом, а на маркировочную табличку установки методом шелкографии или лазерной гравировки.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Установка поверочная АУРС-К	ФГРТ 407369	1 шт.
Паспорт	ФГРТ 407369.001ПС	1 экз.
Руководство по эксплуатации	ФГРТ 407369.001РЭ	1 экз.

Сведения о методиках (методах) измерений

приведены в разделе 9 «Порядок работы» документа «Установка поверочная АУРС-К. Руководство по эксплуатации ФГРТ 407369.001РЭ».

Нормативные и технические документы, устанавливающие требования к установкам поверочным АУРС-К

Приказ Росстандарта от 29.12.2018 №2825 «Об утверждении Государственной поверочной схемы для средств измерений объемного и массового расходов газа»

ГОСТ 8.558–2009 ГСИ. Государственная поверочная схема для средств измерений температуры

Приказ Росстандарта от 06.12.2019 № 2900 Об утверждении Государственной поверочной схемы для средств для средств измерений абсолютного давления в диапазоне от $1 \cdot 10^{-1}$ до $1 \cdot 10^{7}$ Па.

Приказ Росстандарта от 29.06.2018 г. № 1339 Об утверждении Государственной поверочной схемы для средств измерений избыточного давления до 4000 МПа

Приказ Росстандарта от 31.07.2018 №1621 «Об утверждении Государственной поверочной схемы для средств измерений времени и частоты»

ТУ-4073-002-5020085428-2021 Установки поверочные АУРС-К. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Контадор» (ООО «Контадор»)

ИНН 5020085428

Адрес: 141607, г. Клин, Московская область, ул. Литейная, д.20, стр. 1

Юридический адрес: 141603, г. Клин, Московская область, Ленинградское шоссе, д.8, оф.

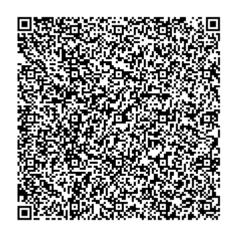
225

Телефон: +79919896251

e-mail: contador.klin@gmail.com

Испытательный центр

Всероссийский научно-исследовательский институт расходометрии - филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» (ВНИИР – филиал ФГУП «ВНИИМ им. Д.И. Менделеева»)


Адрес: Россия, Республика Татарстан, 420088, г. Казань, ул. 2-я Азинская, д. 7 «а»

Юридический адрес: 190005, г. Санкт-Петербург, Московский пр., 19

Телефон (факс): (843) 272-70-62, (843) 272-00-32

Web-сайт: www.vniir.org E-mail: office@vniir.org

Регистрационный номер в реестре аккредитованных лиц RA.RU.310592

