УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «15» апреля 2022 г. № 979

Лист № 1 Всего листов 5

Регистрационный № 85293-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и параметров нефти сырой УПСВ Западно-Зимнего лицензионного участка ООО «Газпромнефть-Хантос»

Назначение средства измерений

Система измерений количества и параметров нефти сырой УПСВ Западно-Зимнего лицензионного участка ООО «Газпромнефть-Хантос» (далее по тексту — СИКНС) предназначена для измерений массы нефти сырой, откачиваемой с УПСВ на Западно-Зимнем лицензионном участке ООО «Газпромнефть-Хантос».

Описание средства измерений

Измерения массы сырой нефти выполняют прямым методом динамических измерений с помощью счетчиков-расходомеров массовых Micro Motion (далее по тексту – МПР). Массу нетто сырой нефти определяют как разность массы сырой нефти и массы балласта. Массу балласта определяют как сумму масс воды, хлористых солей, механических примесей и растворенного газа в сырой нефти.

Конструктивно СИКНС состоит из блока фильтров (БФ), блока измерительных линий (БИЛ), узла подключения передвижной поверочной установки (ПУ), блока измерений параметров сырой нефти (далее по тексту – БИК) и системы сбора и обработки информации (далее по тексту – СОИ). Технологическая обвязка и запорная арматура СИКНС не допускает неконтролируемые пропуски и утечки сырой нефти.

В состав БФ входят следующие средства измерений (СИ) (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее по тексту – регистрационный N_2)):

- манометр технический показывающий МТИф (регистрационный № 60168-15);
- датчик давления Метран-150 модели Метран-150CD3 (регистрационный № 32854-13);
- манометр показывающий для точных измерений МПТИ (регистрационный № 26803-11).

БИЛ состоит из входного и выходного коллекторов, двух рабочих измерительных линий (ИЛ) и одной контрольно-резервной ИЛ.

На входном коллекторе БИЛ установлены следующие СИ:

- термометр ртутный стеклянный лабораторный ТЛ-4 (регистрационный № 303-91);
- датчик температуры Rosemount 644 (регистрационный № 63889-16);
- датчик давления Метран-150 модели Метран-150TG4 (регистрационный № 32854-13);
- манометр показывающий для точных измерений МПТИ (регистрационный № 26803-11);
- манометр технический показывающий МТИф (регистрационный № 60168-15).

На каждой ИЛ установлены следующие СИ:

- счетчик-расходомер массовый Micro Motion модель CMF (регистрационный № 45115-16);
 - датчик давления Метран-150 модели Метран-150TG4 (регистрационный № 32854-13);
 - датчик температуры Rosemount 644 (регистрационный № 63889-16);
 - термометр ртутный стеклянный лабораторный ТЛ-4 (регистрационный № 303-91);
- манометр показывающий для точных измерений МПТИ (регистрационный № 26803-11);
- манометр технический показывающий МТИф (регистрационный № 60168-15).

На выходном коллекторе БИЛ установлены следующие СИ:

- термометр ртутный стеклянный лабораторный ТЛ-4 (регистрационный № 303-91);
- манометр показывающий для точных измерений МПТИ (регистрационный № 26803-11);
- манометр технический показывающий МТИф (регистрационный № 60168-15);
 - датчик давления Метран-150 модели Метран-150TG4 (регистрационный № 32854-13);
 - датчик температуры Rosemount 644 (регистрационный № 63889-16).

БИК выполняет функции измерения и оперативного контроля параметров сырой нефти, а также отбора проб для лабораторного контроля параметров сырой нефти. Отбор представительной пробы сырой нефти в БИК осуществляется по ГОСТ 2517-2012.

В БИК установлены следующие СИ и технические средства:

- влагомер нефти поточный УДВН-1пм2 (регистрационный № 14557-15);
- преобразователь плотности и расхода CDM модели CDM100P (регистрационный № 63515-16);
 - датчик давления Метран-150 модели Метран-150TG4 (регистрационный № 32854-13);
 - датчик давления Метран-150 модели Метран-150CD4 (регистрационный № 32854-13);
 - манометр ДМ2005ф (регистрационный № 58991-14);
 - датчик температуры Rosemount 644 (регистрационный № 63889-16);
 - термометр ртутный стеклянный лабораторный ТЛ-4 (регистрационный № 303-91);
- манометр показывающий для точных измерений МПТИ (регистрационный № 26803-11);
- манометр технический показывающий МТИф (регистрационный № 60168-15);
 - пробоотборник для автоматического отбора пробы Стандарт-АОП;
 - пробоотборник для ручного отбора пробы Стандарт-РОП;
- место для подключения пикнометрической установки или устройства определения содержания свободного и растворённого газа в жидкости.

Узел подключения передвижной ПУ предназначен для проведения поверки и контроля метрологических характеристик (КМХ) МПР по передвижной ПУ.

СОИ обеспечивает сбор, хранение и обработку измерительной информации. В состав СОИ входят: два комплекса измерительно-вычислительных расхода и количества жидкостей и газов АБАК+ (далее по тексту − ИВК) (регистрационный № 52866-13) (рабочий и резервный), осуществляющие сбор измерительной информации и формирование отчетных данных, и автоматизированное рабочее место оператора на базе персонального компьютера с программным комплексом «Сгороѕ» (далее по тексту − АРМ оператора), оснащенное монитором, клавиатурой, мышкой и печатающим устройством.

СИКНС обеспечивает выполнение следующих функций:

- автоматическое измерение массы сырой нефти;
- автоматизированное вычисление массы нетто сырой нефти;
- автоматическое измерение давления и температуры сырой нефти;
- автоматическое измерение объемной доли воды в сырой нефти;
- автоматический и ручной отбор пробы сырой нефти;
- поверка и контроль метрологических характеристик (КМХ) МПР по передвижной поверочной установке, КМХ рабочего МПР по контрольно-резервному МПР;
- отображение, регистрация и хранение результатов измерений, формирование отчётов, протоколов KMX;
 - защита информации от несанкционированного доступа.

Для исключения возможности несанкционированного вмешательства, которое может влиять на показания СИ, входящие в состав СИКНС, обеспечена возможность пломбирования в соответствии с МИ 3002-2006.

Нанесение знака поверки на СИКНС не предусмотрено. Знак поверки наносится на свидетельство о поверке СИКНС.

Заводской номер в виде цифрового обозначение, состоящего из арабских цифр, наносится ударным способом на шильд-табличку блок-бокса СИКНС.

Программное обеспечение

обеспечивает реализацию функций СИКНС. Программное обеспечение (ПО) СИКНС реализовано в ИВК и APM оператора. Идентификационные данные ПО ИВК и APM оператора приведены в таблице 1.

Уровень защиты ПО СИКНС «средний» в соответствии с Р 50.2.077-2014.

Т а б л и ц а 1 - Идентификационные данные ПО СИКНС

Идентификационные данные (признаки)	Значение	
	АРМ оператора	ИВК
Идентификационное наименование ПО	metrology.dll	Abak.bex
Номер версии (идентификационный номер) ПО	1.41.0.0	1.0
Цифровой идентификатор ПО	0x16BB1771	4069091340
Алгоритм вычисления цифрового идентификатора	CRC32	CRC32
Примечание – «0х» показывает, что число приведено в шестнадцатеричной системе счисления, и на		

Метрологические и технические характеристики

Т а б л и ц а 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений расхода, т/ч	от 86,0 до 318,0
Пределы допускаемой относительной погрешности измерений массы	
сырой нефти, %	$\pm 0,\!25$
Пределы допускаемой относительной погрешности измерений массы	
нетто сырой нефти, при определении массовой доли воды с	
применением влагомера нефти поточного УДВН-1пм2, %	$\pm 0,4$

Т а б л и ц а 3 – Основные технические характеристики

Наименование характеристики	Значение
Измеряемая среда	нефть сырая
Характеристики измеряемой среды:	
- температура, °C	от +5 до +50
- кинематическая вязкость нефти обезвоженной при 20°C, сСт	от 5 до 25
- плотность при 20° C, кг/м ³	от 840 до 890
- массовая доля воды, %, не более	10
- массовая доля механических примесей, %, не более	0,05
- массовая концентрация хлористых солей, мг/дм3, не более	2500
- содержание свободного газа, %, не более	отсутствует
- содержание растворенного газа, м3/м3, не более	5,0
- плотность нефтяного газа при 20°C и давлении 101325 Па, кг/м³, не	
более	1,0
- давление, МПа	от 0,4 до 6,3
Параметры электрического питания:	
- напряжение переменного тока, В	380±38, 220±22
- частота переменного тока, Гц	50±0,4
Условия эксплуатации:	
- температура окружающей среды, °С	от -50 до +40
- относительная влажность, %, не более	90
- атмосферное давление, кПа	от 97,0 до 106,7
Средний срок службы, лет, не менее	10
Средняя наработка на отказ, ч	20000
Режим работы СИКНС	непрерывный

Знак утверждения типа

наносится на титульный лист инструкции по эксплуатации СИКНС типографским способом.

Комплектность средства измерений

Таблица4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система измерений количества и параметров нефти сырой УПСВ Западно-Зимнего лицензионного участка ООО «Газпромнефть-Хантос», зав. № 01	-	1 шт.
Инструкция по эксплуатации		1 экз.

Сведения о методиках (методах) измерений

приведены в документе МН 1034-2021 «ГСИ. Масса сырой нефти. Методика измерений системой измерений количества и параметров нефти сырой УПСВ Западно-Зимнего лицензионного участка», ФР.1.29.2021.39844.

Нормативные документы, устанавливающие требования к системе измерений количества и параметров нефти сырой УПСВ Западно-Зимнего лицензионного участка ООО «Газпромнефть-Хантос»

Постановление Правительства Российской Федерации от 16.11.2020 № 1847 Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений

Приказ Росстандарта от 07.02.2018 г. № 256 Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости

Изготовитель

Акционерное общество «Нефтеавтоматика» (АО «Нефтеавтоматика»)

ИНН 0278005403

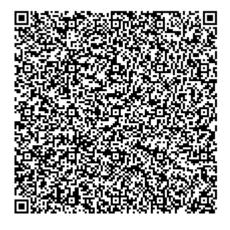
Адрес: 450005, Российская Федерация, Республика Башкортостан, г. Уфа, 50-летия Октября, д.24

Телефон: (347) 228-44-36, 279-88-99, 8-800-700-78-68

Факс: (347) 228-80-98, 228-44-11

E-mail: nefteavtomatika@nefteavtomatika.ru

Испытательный центр


Акционерное общество «Нефтеавтоматика» (АО «Нефтеавтоматика») Адрес: 420029, Республика Татарстан, г. Казань, ул. Журналистов, д. 2а

Телефон: (843) 567-20-10; 8-800-700-78-68

Факс: (843) 567-20-10

E-mail: gnmc@nefteavtomatika.ru

Аттестат аккредитации АО «Нефтеавтоматика» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311366.

