УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «13» мая 2022 г. № 1175

Лист № 1 Всего листов 6

Регистрационный № 85570-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Тестеры оптические ОТ-3-2

Назначение средства измерений

Тестеры оптические ОТ-3-2 (далее - тестеры ОТ-3-2) предназначены для применения в качестве рабочего эталона единиц средней мощности и ослабления оптического излучения для ВОСП для поверки и калибровки измерителей оптической мощности, источников оптического излучения, аттенюаторов, оптических тестеров; измерений оптической мощности и ослабления в оптических волокнах (ОВ) и оптических компонентах, генерации постоянного оптического излучения на фиксированных длинах волн, а также для передачи средней мощности оптического излучения исследуемым средствам измерений в волоконно-оптических системах передачи на фиксированных длинах волн.

Описание средства измерений

Принцип действия тестера OT-3-2 основан на генерировании стабилизированного оптического излучения с помощью лазерных диодов с фиксированными длинами волн и измерении оптической мощности высокоточным оптоэлектронным преобразователем.

Тестер ОТ-3-2 состоит из блока источников излучения и оптоэлектронного преобразователя (ОЭП) SPM-2. В блоке источников излучения расположены:

- источники оптического излучения, предназначенные для формирования стабильных регулируемых уровней оптической мощности;
- процессорный модуль, предназначенный для управления работой тестера OT-3-2, первичной обработки результатов измерения и связи с персональным компьютером (ПК);
- оптический аттенюатор, предназначенный для ослабления мощности оптического излучения на требуемую величину;
- преобразователь напряжения, который вырабатывает требуемые напряжения для питания других блоков тестера OT-3-2.

Для генерации постоянного оптического излучения в тестере ОТ-3-2 используются лазерные диоды (ЛД) с выводом излучения через одномодовое ОВ. Выходная мощность и температура ЛД стабилизируются с помощью соответствующих схем. Источники излучения имеют разъемы FC/UPC. Мощность излучения ЛД регулируется током накачки, который может изменяться процессором по командам с ПК.

Измерение оптической мощности в тестере ОТ-3-2 осуществляется с помощью ОЭП SPM-2. В качестве фотоэлектрического преобразователя используется InGaAs pin-фотодиод, установленный в ОЭП. Ток фотодиода усиливается и преобразуется в цифровую форму схемой ОЭП. Полученный цифровой сигнал передается в блок источников излучения, обрабатывается там, и измеренное значение оптической мощности выводится на экран ПК.

Управление работой тестера ОТ-3-2 осуществляется с помощью ПК, подключаемого к блоку источников излучения. Связь с ПК осуществляется через порт USB с помощью интерфейсного кабеля, поставляемого в комплекте с тестером ОТ-3-2.

Конструктивно блоки тестера OT-3-2 выполнены в прямоугольных металлических корпусах настольно-переносного типа.

На передней панели блока источников излучения расположены: выключатель питания, оптические розетки выходов источников излучения, оптические розетки аттенюатора, два разъема USB-A для подключения ОЭП, индикаторные светодиоды питания и включения источников излучения.

На передней панели ОЭП SPM-2 находится оптический разъем измерителя мощности. Общий вид тестера ОТ-3-2 с обозначением места нанесения знака поверки представлен

Рисунок 1 – Общий вид тестера ОТ-3-2

На задней панели блока источников излучения установлены разъемы для подключения блока питания и для соединения с ПК. На задней панели ОЭП находится разъем USB-В для соединения с блоком источников излучения.

Для защиты от несанкционированного доступа к элементам схемы корпус тестера пломбируется. Пломбой закрывается левый винт крепления задней панели блока источников излучения. На боковые и нижнюю панель ОЭП наклеиваются две гарантийные наклейки. Схема пломбирования показана на рисунке 2.

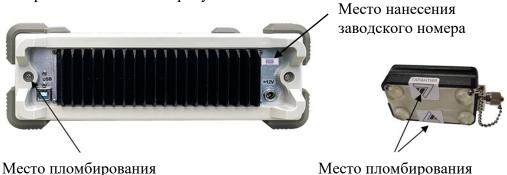


Рисунок 2 – Схема пломбировки от несанкционированного доступа

Заводской номер расположен на задней панели тестера ОТ-3-2, номер выполнен печатным способом, место нанесения указано на рисунке 2:

Зав. № 05320 с оптоэлектронным преобразователем SPM-2 0378620;

Зав. № 05420 с оптоэлектронным преобразователем SPM-2 0378720;

Зав. № 05520 с оптоэлектронным преобразователем SPM-2 0378820.

Программное обеспечение

Программное обеспечение (далее по тексту — Π O) предназначено для управления работой тестера ОТ-3-2. Π O разделено на две части. Метрологически значимая часть Π O прошита в памяти процессора блока источников излучения и процессора ОЭП. Интерфейсная часть Π O запускается на Π K и служит для обработки, отображения и сохранения результатов измерений.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ot-3-2
Номер версии (идентификационный номер) ПО	5.8.0.0 и выше
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 – метрологические характеристики	
Наименование характеристики	Значение
Рабочие длины волн источников оптического излучения, нм	1310±5, 1490±5, 1550±5, 1625±5
Максимальная мощность источников излучения, мВт, не	
менее:	
1310 нм	10
1490 нм	6
1550 нм	10
1625 нм	6
Нестабильность мощности источников излучения за 15 минут, дБ, не более	0,005
Рабочий спектральный диапазон измерения оптической мощности, нм	от 1200 до 1660
Диапазон измерений оптической мощности, Вт (дБм)	от 1·10 ⁻¹¹ до 1·10 ⁻² (от -80 до 10)
Пределы допускаемой относительной погрешности	
измерений оптической мощности на длинах волн	
источников излучения, %	
- при значениях мощности от $1 \cdot 10^{-10}$ до $1 \cdot 10^{-2}$ Вт	±3
- при значениях мощности от $1 \cdot 10^{-11}$ до $1 \cdot 10^{-10}$ Вт	±5

Продолжение таблицы 2

Наименование характеристики	Значение
Пределы допускаемой относительной погрешности	
измерений относительных уровней оптической	
мощности, %	
- при значениях мощности от $1 \cdot 10^{-10}$ до $1 \cdot 10^{-2}$ Вт	±0,8
- при значениях мощности от 1·10 ⁻¹¹ до 1·10 ⁻² Вт	±1,5
Пределы допускаемой относительной погрешности	
измерений оптической мощности в рабочем	
спектральном диапазоне от 1200 до 1660 нм, %	±5

Таблица 3 – Основные технические характеристики

Значение	
2,5	
70	
230±23	
50±0,4	
12±1	
30	
1,5	
8	
280×320×88	
85×40×30	
3,5	
от +10 до +30	
80	
от 70 до 106,7 (от 537 до 800)	

Знак утверждения типа

наносится на переднюю панель тестера методом наклеивания, а также на титульный лист паспорта и руководства по эксплуатации типографическим способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Тестер оптический ОТ-3-2	-	1 шт.
Оптоэлектронный преобразователь SPM-2	-	1 шт.
Оптический кабель соединительный одномодовый, разъемы FC/UPC - FC/UPC	-	2 шт.
Оптический кабель соединительный одномодовый, разъемы FC/UPC - SC/UPC	-	1 шт.
Оптический кабель соединительный одномодовый, разъемы FC/UPC - ST/UPC	-	1 шт.
Адаптеры для оптоэлектронного		
преобразователя:		
- для оптического разъема типа FC	-	1 шт.
- для оптического разъема типа ST	-	1 шт.
- для оптического разъема типа SC	-	1 шт.
Блок питания	-	1 шт.
Кабель интерфейсный USB-A-USB-B	-	2 шт.
Компакт-диск с программным обеспечением, руководством по эксплуатации	-	1 шт.
Руководство по эксплуатации	-	1 экз.
Паспорт		1 экз.
Сумка упаковочная	-	1 шт.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе «Руководство по эксплуатации. Тестеры оптические ОТ-3-2» раздел 8

Нормативные документы, устанавливающие требования к тестерам оптическим ОТ-3-2

Приказ Федерального агентства по техническому регулированию и метрологии от 05.12.19 № 2862 Об утверждении государственной поверочной схемы для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны оптического излучения для волоконно-оптических систем связи и передачи информации

Р 50.2.084-2013 Государственная система обеспечения единства измерений. Рабочие эталоны единицы средней мощности оптического излучения в волоконно-оптических системах передачи. Методика поверки.

Правообладатель

Закрытое акционерное общество «Институт информационных технологий» (ЗАО «Институт информационных технологий»), Республика Беларусь

Адрес: 220099, г. Минск, ул. Казинца, д. 11a, офис A304 Телефон, факс: (+375 17) 235 90 48, 235 90 47, 302 85 03

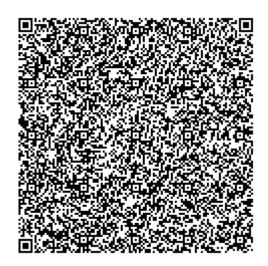
Web-сайт: <u>www.agizer.com.ru</u> E-mail: info@agizer.com

Изготовитель

Закрытое акционерное общество «Институт информационных технологий» (ЗАО «Институт информационных технологий»), Республика Беларусь

Адрес: 220099, г. Минск, ул. Казинца, д. 11a, офис A304 Телефон, факс: (+375 17) 235 90 48, 235 90 47, 302 85 03

Web-сайт: www.agizer.com.ru E-mail: info@agizer.com


Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений»

Адрес: 119361, Россия, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-56-33 Факс: +7 (495) 437-31-47 E-mail: vniiofi@vniiofi.ru Web-сайт: www.vniiofi.ru

Аттестат аккредитации ФГУП «ВНИИОФИ» по проведению испытаний средств измерений в целях утверждения типа № 30003-2014 от 23.06.2014 г.

