УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «7» июля 2022 г. №1676

Лист № 1 Всего листов 29

Регистрационный № 86024-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы АНКАТ-64М3.2

Назначение средства измерений

Газоанализаторы АНКАТ-64М3.2 (далее — газоанализаторы) предназначены для непрерывных автоматических измерений объёмной доли кислорода (O_2), метана (C_4), пропана (C_3H_8), массовой концентрации вредных веществ, довзрывоопасных концентраций одиночных горючих газов, паров горючих жидкостей и их совокупности в воздухе, в том числе паров нефти и нефтепродуктов, а также выдачи сигнализации о достижении содержания определяемых компонентов установленных пороговых значений.

Описание средства измерений

Газоанализаторы представляют собой многоканальные одноблочные носимые (индивидуальные) приборы непрерывного действия.

В газоанализаторы устанавливаются от одного до четырех датчиков, образуя от одного до пяти каналов измерений (далее – КИ):

- а) КИ, основанные на термокаталитическом (термохимическом) принципе измерений (далее КИ ТХ), реализуемые при установке в газоанализаторы ТХД. Предназначены для определения довзрывоопасных концентраций одиночных горючих газов, паров горючих жидкостей и их совокупности, в том числе паров нефти и нефтепродуктов;
- б) КИ, основанные на электрохимическом принципе измерений (далее КИ ЭХ), реализуемые при установке в газоанализаторы одноканальных и двухканальных ЭХД. Предназначены, в соответствии с видом устанавливаемого ЭХД, для определения:
- 1) одноканальные ЭХД объёмной доли кислорода (O₂); массовой концентрации вредных веществ оксида углерода (CO), сероводорода (H₂S), диоксида азота (NO₂), диоксида серы (SO₂), хлора (Cl₂), хлороводорода (HCl), аммиака (NH₃), метанола (CH₃OH), формальдегида (CH₂O), водорода цианистого (HCN);
- 2) двухканальные ЭХД массовой концентрации оксида углерода и сероводорода (CO/H₂S);
- в) КИ, основанные на оптико-абсорбционном принципе измерений в инфракрасной области оптического спектра (далее КИ ИК), реализуемые при установке в газоанализаторы ИКД двух типов для работы во взрывоопасных зонах класса 0 (КИ ИК0) и для работы во взрывоопасных зонах класса 1 (КИ ИК1). Предназначены, в соответствии с видом устанавливаемого ИКД, для определения объёмной доли диоксида углерода (CO2), метана (CH4), пропана (C3H8); довзрывоопасных концентраций метана (CH4), пропана (C3H8), паров горючих жидкостей, в том числе паров нефти и нефтепродуктов (C_xH_y);
- г) КИ, основанные на фотоионизационном принципе измерений (далее КИ ФИ), реализуемые при установке в газоанализаторы ФИД. Предназначены, в соответствии с градуировкой, для определения массовой концентрации вредных веществ, в том числе паров нефти и нефтепродуктов.

Способ отбора пробы — диффузионный. Допускается принудительная подача пробы на газоанализаторы с помощью внешних средств.

Режим работы по ГОСТ 18311 – прерывисто-продолжительный.

Конструктивно газоанализаторы состоят из корпуса и блока аккумуляторного.

На корпусе газоанализаторов расположены:

- четыре одинаковых окна, закрытые защитными мембранами из гидрофобного газопроницаемого материала, под которыми находятся датчики или заглушки (при отсутствии датчика);
 - светопрозрачные окна над светодиодами сигнализации;
 - табло (графический LED-дисплей);
 - таблички со сведениями о КИ газоанализаторов;
 - окно звукового излучателя;
 - кнопки управления режимами газоанализатора;
- пазы для установки маски для ПГС или маски для пробы и втулка для крепления маски для пробы.

Электронные узлы, размещенные в корпусе, защищены от несанкционированного вмешательства гарантийными наклейками.

На блоке аккумуляторном расположены:

- клипса для крепления газоанализаторов на одежде;
- табличка блока аккумуляторного;
- ламельные контакты для подключения адаптера, используемого при заряде АБ и связи с ПЭВМ.

Газоанализаторы изготавливаются трех групп конструктивных исполнений:

- базовая;
- с аккумуляторной батареей увеличенной емкости (индекс «У» в обозначении);
- с аккумуляторной батареей увеличенной емкости, радиоканалом (далее РК) и датчиком движения (далее ДД) (индекс «УР» в обозначении).

Вывод измерительной информации осуществляется:

- на табло;
- по цифровым каналам связи USB (для всех газоанализаторов) и беспроводному (для газоанализаторов с PK).

Газоанализаторы выполняют следующие функции:

- измерений;
- расчета среднесменных значений массовой концентрации;
- пересчета измеренных значений из одной ЕФВ в другую;
- сигнализации уровня загазованности (световой, звуковой и вибросигнализации) по каждому КИ;
 - автокорректировки показаний;
 - выбора значений уставок сигнализации по каждому КИ;
 - архивирования результатов измерений по каждому КИ;
 - обмена данными с ПЭВМ по цифровому каналу связи USB;
 - выбора/задания параметров газоанализаторов;
 - сброса параметров газоанализаторов к заводским настройкам;
 - защиты ФИД (отключения при перегрузке);
 - самодиагностики;
- информационную выдачу сообщений о режимах работы и результатах самодиагностики;
 - тревожной сигнализации;
 - заряда встроенной АБ;
 - абонента радиосети (только для газоанализаторов с индексом «Р»);
- сигнализации неподвижности газоанализатора (только для газоанализаторов с индексом «Р»).

Условные наименования и обозначения модификаций газоанализаторов, их конструктивные отличия, маркировка взрывозащиты приведены в таблице 1.

Общий вид газоанализаторов с указанием мест нанесения знака утверждения типа, заводского номера приведен на рисунке 1.

Нанесение знака поверки на газоанализатор не предусмотрено.

Заводской шестизначный номер наносится методом лазерной гравировки на табличку в месте, указанном на рисунке 1.

Схема пломбировки от несанкционированного доступа (обозначение мест расположения гарантийных наклеек) приведена на рисунке 2.

Таблица 1 – Модификации газоанализаторов

Таолица 1 — модификации газоанализаторов Обозначение Условное АБ								
модификаций	наименование	Устан	авливаемь	ый КИ (от 1 д	до 4)	Маркировка	повышенно	РК и
газоанализаторов	модификаций				,	взрывозащиты	й емкости	ДД
ИБЯЛ.413411.065	AHKAT-64M3.2-20	ИК0	ЭХ	ЭХ	ЭХ	0Ex ia IIC T4 Ga X	_	
ИБЯЛ.413411.065-01	АНКАТ-64М3.2-20-У	YIKU	$\mathcal{J}\Lambda$	31	$J\Lambda$	UEX IA IIC 14 Ga A	+	
ИБЯЛ.413411.065-02	AHKAT-64M3.2-21							
ИБЯЛ.413411.065-03	АНКАТ-64М3.2-21-У	ИК1	ЭХ	ЭХ	ЭХ	1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-100	АНКАТ-64М3.2-21- УР	YIK1	JA	JA	JA	TEX UTO HC 14 GO X	+	+
ИБЯЛ.413411.065-04	AHKAT-64M3.2-22	ИК0	ИК0	ЭХ	ЭХ	0Ex ia IIC T4 Ga X		
ИБЯЛ.413411.065-05	АНКАТ-64М3.2-22-У	YINU	YIKU	<i>3</i> A	$J\Lambda$	UEX IA IIC 14 Ga A	+	
ИБЯЛ.413411.065-06	AHKAT-64M3.2-23							
ИБЯЛ.413411.065-07	АНКАТ-64М3.2-23-У	ИК1	ИК1	ЭХ	ЭХ	1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-101	АНКАТ-64М3.2-23- УР	IIXI	PIKI	JA	JΛ	12x 0 10 11C 14 00 X	+	+
ИБЯЛ.413411.065-08	AHKAT-64M3.2-24							
ИБЯЛ.413411.065-09	АНКАТ-64М3.2-24-У	ИК1	TX	ЭХ	ЭХ	1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-102	АНКАТ-64М3.2-24- УР	IIXI	IX	JA	JA	TEX UTO HC 14 GO X	+	+
ИБЯЛ.413411.065-10	AHKAT-64M3.2-25							
ИБЯЛ.413411.065-11	АНКАТ-64М3.2-25-У	ИК1	TX	ЭХ	ЭХ	1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-103	АНКАТ-64М3.2-25- УР	YIKI	1 A	(CO/H ₂ S)	JA	TEX 0 10 HC 14 G0 X	+	+
ИБЯЛ.413411.065-12	AHKAT-64M3.2-26	ИК0	ФИ	ЭХ	ЭХ	0Ex ia IIC T4 Ga X	—	
ИБЯЛ.413411.065-13	АНКАТ-64М3.2-26-У	riko	ΨΠ	JA.	JA	OEX IA IIC 14 Ga X	+	
ИБЯЛ.413411.065-14	AHKAT-64M3.2-27							
ИБЯЛ.413411.065-15	АНКАТ-64М3.2-27-У	ИК1	ΦИ	ЭХ	ЭХ	1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-104	АНКАТ-64М3.2-27- УР	IIKI	411	371	371	TEX G TO THE THIRD TA	+	+
ИБЯЛ.413411.065-16	АНКАТ-64М3.2-28	ИК0	ФИ	ЭХ	ЭХ	0Ex ia IIC T4 Ga X		
ИБЯЛ.413411.065-17	АНКАТ-64М3.2-28-У	YIIVU	ΨH	(CO/H_2S)	$J\Lambda$		+	

Обозначение модификаций газоанализаторов	Условное наименование модификаций	Устанавливаемый КИ (от 1 до 4)			Маркировка взрывозащиты	АБ повышенно й емкости	РК и ДД	
ИБЯЛ.413411.065-18	AHKAT-64M3.2-29						—	
ИБЯЛ.413411.065-19	АНКАТ-64М3.2-29-У	ИК1	ФИ	ЭХ	ЭХ	1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-105	АНКАТ-64М3.2-29- УР	YIKI	ΨΗ	(CO/H ₂ S)	JA	TEX U 10 HC 14 OU X	+	+
ИБЯЛ.413411.065-20	AHKAT-64M3.2-30							
ИБЯЛ.413411.065-21	АНКАТ-64М3.2-30-У	ФИ	ЭХ	ЭХ ЭХ ЭХ 1Ex i		1Ex ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-106	АНКАТ-64М3.2-30- УР	ΨΠ	JA.	JA.	JΛ	ILA IO HC 14 GO A	+	+
ИБЯЛ.413411.065-22	AHKAT-64M3.2-31							
ИБЯЛ.413411.065-23	АНКАТ-64М3.2-31-У	ФИ	TX	ЭХ	ЭХ	1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-107	АНКАТ-64М3.2-31- УР	711	171	371	371	12.4 4 10 110 11 1 00 11	+	+
ИБЯЛ.413411.065-24	AHKAT-64M3.2-32							
ИБЯЛ.413411.065-25	АНКАТ-64М3.2-32-У	ФИ	TX	ЭХ	ЭХ	1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-108	АНКАТ-64М3.2-32- УР	711	171	(CO/H ₂ S)	371	TEA GIO HO I I GO II	+	+
ИБЯЛ.413411.065-26	AHKAT-64M3.2-33							
ИБЯЛ.413411.065-27	АНКАТ-64М3.2-33-У	TX	ЭХ	ЭХ	ЭХ	ЭX 1Ex d ib IIC T4 Gb X	+	
ИБЯЛ.413411.065-109	АНКАТ-64М3.2-33- УР	171	<i></i>	(CO/H ₂ S)	<i>J</i> 11	ILA GIO HE 14 GOA	+	+
ИБЯЛ.413411.065-28	AHKAT-64M3.2-34	ЭХ	ЭХ	ЭХ	ЭХ	OF to HC T4 C - V		
ИБЯЛ.413411.065-29	АНКАТ-64М3.2-34-У	JA	JA	(CO/H ₂ S)	JA	0Ex ia IIC T4 Ga X	+	

ИКО – устанавливаются ИКД для работы во взрывоопасных зонах класса 0;

ИК1 – устанавливаются ИКД для работы во взрывоопасных зонах класса 1;

ЭХ(СО/H2S) – устанавливается только двухканальный ЭХД.

Рисунок 1 — Общий вид газоанализаторов с указанием мест нанесения знака утверждения типа, заводского номера

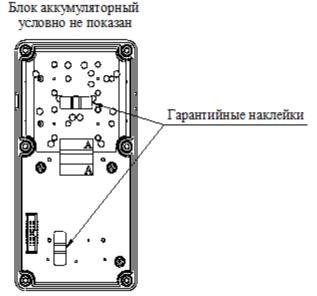


Рисунок 2 – Схема пломбировки газоанализаторов от несанкционированного доступа

Программное обеспечение

Газоанализаторы имеют:

- встроенное программное обеспечение (далее ВПО), разработанное изготовителем специально для непрерывного автоматического измерения содержания определяемых компонентов;
- сервисное программное обеспечение (далее СПО), разработанное изготовителем для просмотра/задания параметров газоанализаторов, просмотра содержимого архива газоанализаторов в табличном и графическом видах и сохранение их в файл.

ВПО и СПО газоанализаторов соответствуют ГОСТ Р 8.654—2015.

Уровень защиты ВПО и измерительной информации от непреднамеренных и преднамеренных изменений осуществляется посредством механической защиты и с помощью специальных программных средств (средств программной разработки) и соответствует уровню защиты «высокий» в соответствии с Р 50.2.077—2014.

Уровень защиты СПО и измерительной информации от непреднамеренных и преднамеренных изменений осуществляется посредством встроенных средств СПО и соответствует уровню защиты «высокий» в соответствии с Р 50.2.077—2014.

Влияние ПО учтено при нормировании метрологических характеристик газоанализаторов.

Идентификационные данные ВПО и СПО приведены в таблице 2.

Таблица 2 – Идентификационные данные программного обеспечения

Идоминализмина домина (призмаки) ПО	Значение			
Идентификационные данные (признаки) ПО	ВПО	СПО		
Идентификационное наименование	ANKAT-	АНКАТ-		
	64M3.2	64M3.2_SPO.exe		
Номер версии (идентификационный номер)	3.00	3.00		
Цифровой идентификатор	AFD3	982A		
Алгоритм вычисления цифрового идентификатора	CRC-16			
Номер версии ПО должен быть не ниже указанного в таблице. Значение цифрового				

Номер версии ПО должен быть не ниже указанного в таблице. Значение цифрового идентификатора относится только к файлу прошивки обозначенной в таблице версии.

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики

Габлица 3 – Метрологические характеристики					
Наименование характеристики	Значение				
Основные метрологические харак	ктеристики газоанализаторов по КИ ТХ				
Перечень определяемых компонентов по КИ ТХ(М-50), КИ ТХ(М-100) (поверочный компонент – метан (СН ₄))	водород, метан, газ природный, метанол (СН ₃ ОН), этан (С ₂ Н ₆), этилен (С ₂ Н ₄), этиловый спирт (С ₂ Н ₅ ОН), пропилен (С ₃ Н ₆), 1,2-пропиленоксид (С ₃ Н ₆ О), пропан (С ₃ Н ₈), ацетилен (С ₂ Н ₂), ацетон (СН ₃ СОСН ₃), 1,3-бутадиен (С ₄ Н ₆), бутан (С ₄ Н ₁₀), газы углеводородные сжиженные, изобутан ((СН ₃) ₃ СН), диэтилэфир (С ₄ Н ₁₀ О), этилацетат (СН ₃ СООС ₂ Н ₅), циклопентан (С ₅ Н ₁₀), пентан (С ₅ Н ₁₂), бензол (С ₆ Н ₆), гексан (С ₆ Н ₁₄), попутный нефтяной газ				
Перечень определяемых компонентов по КИ ТХ(П-50), КИ ТХ(П-100) (поверочный компонент – пропан (С ₃ H ₈))	метан, газ природный, метанол (СН ₃ ОН), этан (С ₂ Н ₆), этилен (С ₂ Н ₄), этиловый спирт (С ₂ Н ₅ ОН), пропилен (С ₃ Н ₆), 1,2-пропиленоксид (С ₃ Н ₆ О), пропан (С ₃ Н ₈), ацетилен (С ₂ Н ₂), ацетон (СН ₃ СОСН ₃), 1,3-бутадиен (С4Н ₆), бутан (С4Н ₁₀), газы углеводородные сжиженные, изобутан ((СН ₃) ₃ СН), диэтилэфир (С ₄ Н ₁₀ О), этилацетат (СН ₃ СООС ₂ Н ₅), циклопентан (С ₅ Н ₁₀), пентан (С ₅ Н ₁₂), бензол (С ₆ Н ₆), гексан (С ₆ Н ₁₄), попутный нефтяной газ, бутилацетат (СН ₃ СООС ₄ Н ₉), толуол (С ₆ Н ₅ СН ₃), гептан (С ₇ Н ₁₆), ксилол (С ₆ Н ₄ (СН ₃) ₂), октан (С ₈ Н ₁₈), нонан (С ₉ Н ₂₀)				

Продолжение таблицы 3					
Наименование характеристики	Значение				
Перечень определяемых компонентов по КИ ТХ(Γ) (поверочный компонент — гексан (C_6H_{14}))	пропан (C_3H_8) , ацетилен (C_2H_2) , ацетон (CH_3COCH_3) , $1,3$ -бутадиен (C_4H_6) , бутан (C_4H_{10}) , газы углеводородные сжиженные, изобутан $((CH_3)_3CH)$, диэтилэфир $(C_4H_{10}O)$, этилацетат $(CH_3COOC_2H_5)$, циклопентан (C_5H_{10}) , пентан (C_5H_{12}) , бензол (C_6H_6) , гексан (C_6H_{14}) , попутный нефтяной газ, бутилацетат $(CH_3COOC_4H_9)$, толуол $(C_6H_5CH_3)$, гептан (C_7H_{16}) , ксилол $(C_6H_4(CH_3)_2)$, октан (C_8H_{18}) , нонан (C_9H_{20}) , декан $(C_{10}H_{22})$, пары нефти, пары керосина, пары топлива дизельного, пары бензина, пары топлива авиационного, пары бензина авиационного, пары бензина авиационного, пары топлива для реактивных двигателей, уайт-спирит				
Перечень определяемых компонентов по					
КИ ТХ(В) (поверочный компонент – водород (H ₂))	водород (Н2)				
Лиапазон сигнальных концентраций по К	И ТХ(М-50), ТХ(М-100), ТХ(П-50), ТХ(П-100)				
и $\mathrm{TX}(\Gamma)$ при контроле совокупности компонентов, перечень которых приведен выше, - от					
	я порога сигнализации ПОРОГ2 равным 12 %				
	метан (СН ₄)				
Поверочный компонент КИ ТХ	пропан (C_3H_8)				
(определяется при заказе)	гексан (С ₆ H ₁₄)				
	водород (Н2)				
Лиапазон измерений (папее – ЛИ) пиапаз	вон показаний, пределы допускаемой основной				
	сти по поверочному компоненту, цена ЕМР				
цифровой индикации соответствуют прив					
	еденным в гаолице 4.				
Номинальная функция преобразования	A V C *				
газоанализаторов по измерительным	$A = K_{\Pi} \cdot C_{BX} *$				
каналам ТХ имеет вид:	YATTA				
* где А – показания газоанализатора, % Н					
	компонента на входе газоанализатора, % НКПР				
Кп – коэффициент пропорционал	· ·				
а) поверочный компонент метан:	б) поверочный компонент пропан:				
1) по метану – 1;	1) по пропану – 1;				
(2) по водороду $-(1,2\pm0,3);$	2) по метану – $(1,4 \pm 0,1)$;				
3) по гексану – (0.5 ± 0.1) ;	3) по нонану $-(0.5 \pm 0.1)$;				
в) поверочный компонент гексан:	г) поверочный компонент водород – 1,0.				
1) по гексану – 1;					
2) по пропану – $(1,3 \pm 0,1)$;					
3) по декану $-(0.34 \pm 0.10)$;					
•	теристики газоанализаторов по КИ ЭХ				
Оправання компонации вноповани намораний вноповани покороний изи ЕМР					

Определяемые компоненты, диапазоны измерений, диапазоны показаний, цена EMP индикации результатов измерений, пределы допускаемой основной абсолютной погрешности газоанализаторов по измерительным каналам ЭХ соответствуют приведенным в таблице 5.

Наименование характеристики	Значение				
Основные метрологические харак	ктеристики газоанализаторов по КИ ИК				
Определяемые компоненты, диапазоны	измерений, диапазоны показаний и пределы				
допускаемой основной абсолютной	погрешности газоанализаторов по КИ ИК				
соответствуют приведенным в таблице 6.					
Номинальная цена ЕМР цифровой					
индикации показаний газоанализаторов					
по КИ ИК:					
а) ИК0(М-100), ИК1(М-100), ИК0(П-					
100), ИК1(Π -100), ИК0($CxHy$),					
ИК1(СхНу), %НКПР					
б) ИК0(М-4,4), ИК1(М-4,4), ИК0(П-1,7),	0,1				
$ИК1(\Pi-1,7), ИК1(ДУ-2), ИК0(ДУ-5),$					
ИК1(ДУ-5), ИК1(ДУ-10), % объемной					
доли	0,01				
Основные метрологические харак	теристики газоанализаторов по КИ ФИ				
Диапазоны измерений, диапазоны по	оказаний, пределы допускаемой основной				
абсолютной (относительной) погрешност	ти газоанализаторов по КИ ФИ соответствуют				
приведенным в таблице 7.					
Цена ЕМР индикации массовой					
концентрации определяемого					
компонента по КИ ФИ, мг/м ³ :					
- в диапазоне показаний от 0 до 99,9	0,1				
- в диапазоне показаний свыше 100	1,0				

Таблица 4 — Основные метрологические характеристики газоанализаторов по КИ ТХ

,				п п	
			Участок ДИ, в	Предел допускаемой	
Обозначение	ДИ		котором	основной	Цена
КИ	(диапазон	ЕФВ	нормируется	абсолютной ($\Delta_{ m Д}$)	ЕМР
KII	показаний)		основная	или относительной	Livii
			погрешность	(δ _Д) погрешности	
TV(M 50)	0 - 50		во всем		
TX(M-50)	(0 - 100)		диапазоне	$\Delta_{ m II} = \pm 5$	
TX(M-100)	0 - 100		от 0 до 50 включ.	$\Delta_{\rm II} = \pm 5$	
1A(M-100)	(0 - 100)		св. 50 до 100	$\delta_{\rm A} = \pm 10$	
ТХ(П-50)	0 - 50	% НКПР	во всем	A - 15	0,1
1A(11-30)	(0 - 100)	70 11K11F	диапазоне	$\Delta_{\mathrm{II}} = \pm 5$	0,1
ТХ(П-100)	0 - 100		от 0 до 50 включ.	$\Delta_{\rm II} = \pm 5$	
17(11-100)	(0 - 100)		св. 50 до 100	$\delta_{\rm A}$ = $\pm~10$	
$TV(\Gamma)$	0 - 50		во всем	A - 15	
$TX(\Gamma)$	(0 - 100)		диапазоне	$\Delta_{\mathrm{JJ}} = \pm 5$	
TX(B)	0 - 2,00	объемная	от 0 до 2,00	$\Delta_{ m II}$ = \pm 0,20	0,01
IA(D)	(0-2,40)	доля, %	01 0 д0 2,00	∆д — ± 0,20	0,01

Таблица 5 – Основные метрологические характеристики газоанализаторов по КИ ЭХ

Обозначение КИ	Определяемый компонент	ЕФВ	ДИ (диапазон показаний)	Цена ЕМР	Участок ДИ, в котором нормируется основная погрешность	Предел допускаемой основной абсолютной погрешности (Дд)
ЭХ(О2-30)	кислород (О2)	объемная доля, %	от 0 до 30 (от 0 до 45)	0,1	во всем диапазоне	±0,5
ЭХ(СО-500/	оксид углерода (СО)	$M\Gamma/M^3$	от 0 до 500 (от 0 до 500)	0,1	от 0 до 20 включ. св. 20 до 500	± 5 $\pm (5+0,1\cdot (C_{BX}-20))$
H2S-100)	сероводород (H ₂ S)	MΓ/M ³	от 0 до 100 (от 0 до 100)	0,1	от 0 до 10 включ. св. 10 до 100	±2 ±0,2·C _{bx}
ЭХ(СО-200/	оксид углерода (СО)	, 3	от 0 до 200 (от 0 до 300)	0.1	от 0 до 20 включ. св. 20 до 200	± 5 $\pm (5+0,1\cdot (C_{BX}-20))$
H2S-40)	сероводород (H ₂ S)	$M\Gamma/M^3$	от 0 до 40 (от 0 до 100)	0,1	от 0 до 10 включ. св. 10 до 40	± 2 ±0,2·C _{BX}
ЭХ(СО-200/	оксид углерода (СО)	. 2	от 0 до 200 (от 0 до 500)		от 0 до 20 включ. св. 20 до 200	± 5 $\pm (5+0,1\cdot(C_{BX}-20))$
H2S-20)	`	мг/м от 0 д	от 0 до 20 (от 0 до 50)	0,1	от 0 до 3 включ. св. 3 до 20	$\begin{array}{c} \pm 0.7 \\ \pm (0.7 + 0.25 \cdot (C_{BX} - 3)) \end{array}$
ЭХ(СО-200)	оксид углерода (СО)	мг/м ³	от 0 до 200 (от 0 до 300)	0,1	от 0 до 20 включ. св. 20 до 200	$\begin{array}{c} \pm 5 \\ \pm (5+0,1\cdot(C_{BX}-20)) \end{array}$
ЭХ(Н2S-20)	сероводород (H ₂ S)	мг/м ³	от 0 до 20 (от 0 до 50)	0,1	от 0 до 3 включ. св. 3 до 20	$\begin{array}{c} \pm 0.7 \\ \pm 0.7 \\ \pm (0.7 + 0.25 \cdot (C_{BX} - 3)) \end{array}$
ЭХ(Н2S-40)	сероводород (H ₂ S)	MΓ/M ³	от 0 до 40 (от 0 до 100)	0,1	от 0 до 10 включ. св. 10 до 40	± 2 $\pm 0.2 \cdot C_{BX}$
ЭХ(Н2S-100)	сероводород (H ₂ S)	MΓ/M ³	от 0 до 100 (от 0 до 100)	0,1	от 0 до 10 включ. св. 10 до 100	± 2 ±0,2·C _{BX}
ЭХ(SO2-20)	Диоксид серы (SO ₂)	MΓ/M ³	от 0 до 20 (от 0 до 40)	0,1	от 0 до 10 включ. св. 10 до 20	± 2.5 $\pm (2.5 + 0.25 \cdot (C_{BX} - 10))$
ЭХ(NO2-10)	Диоксид азота (NO ₂)	MΓ/M ³	от 0 до 10 (от 0 до 20)	0,01	от 0 до 2 включ. св. 2 до 10	$ \begin{array}{c} \pm (2.5 + 0.25 \text{ (C_{BX} 10)}) \\ \pm 0.5 \\ \pm (0.5 + 0.25 \cdot \text{(C_{BX}-2)}) \end{array} $
ЭX(Cl2-25)	Хлор (Cl ₂)	MΓ/M ³	от 0 до 25 (от 0 до 40)	0,01	от 0 до 1 включ. св. 1 до 25	$\begin{array}{c} \pm (0.5 + 0.25 \text{ (C_{BX} 2)}) \\ \pm 0.25 \\ \pm (0.25 + 0.25 \cdot (C_{BX} - 1)) \end{array}$

Обозначение КИ	Определяемый компонент	ΕΦВ	ДИ (диапазон показаний)	Цена ЕМР	Участок ДИ, в котором нормируется основная погрешность	Предел допускаемой основной абсолютной погрешности (Дд)
ЭХ(НС1-30)	Хлористый водород	$M\Gamma/M^3$	от 0 до 30	0,01	от 0 до 5 включ.	±1,25
371(1101 30)	(HCl)	1411 / 141	(от 0 до 40)	0,01	св. 5 до 30	$\pm 0.25 \cdot C_{\text{BX}}$
ЭХ(NH3-150)	Аммиак (NH ₃)	$M\Gamma/M^3$	от 0 до 150	0,1	от 0 до 20 включ.	± 5,0
JA(N113-130)	Ammuak (IVII3)	M1 / M	(от 0 до 200)	0,1	св. 20 до 150	$\pm (5+0,2\cdot (C_{BX}-20))$
ЭХ(СН3ОН-	Метанол (СН ₃ ОН)	$M\Gamma/M^3$	от 0 до 100	0,1	от 0 до 5 включ.	± 1,25
100)	метанол (СпзОп)	M17 M	(от 0 до 125)	0,1	св. 5 до 100 включ.	$\pm (1,25+0,25\cdot(C_{BX}-5))$
ЭХ(СН2О-10)	Формальдегид	$M\Gamma/M^3$	от 0 до 10	0,01	от 0 до $0,5$ включ.	± 0,25
3A(CH2O-10)	(CH ₂ O)	M17 M	(от 0 до 12)	0,01	св. 0,5 до 10,0 включ.	$\pm (0.25 + 0.2 \cdot (C_{BX} - 0.5))$
ЭX(HCN-50) ¹⁾	Цианистый водород	мг/м ³	от 0 до 50	0.1	от 0 до 10 включ.	± 2
3Λ(ΠCN-30) ⁷	(HCN)	M17 M	(от 0 до 100)	0,1	св. 10 до 50	$\pm (2+0,2\cdot(C_{BX}-10))$

 $^{^{1)}}$ - Не применяется при контроле ПДК в воздухе рабочей зоны, только для аварийных ситуаций; Свх — массовая концентрация определяемого компонента на входе газоанализатора, мг/м 3 .

Таблица 6 – Основные метрологические характеристики газоанализаторов по КИ ИК

таолица 0 – Ос	новные метрологические хара	ктеристики	Тазоанализато	POR 110 KM MK
Обозначение КИ (поверочный компонент)	Определяемый компонент	ЕΦВ	ДИ (диапазон показаний)	Предел допускаемой основной абсолютной погрешности ($\Delta_{ m J}$)
	Пропан (С ₃ Н ₈)		от 0 до 100 (от 0 до 100)	$\pm (2,5+0,05\cdot C_{BX})$
	Газ сжиженный ГОСТ 20448			$\pm (2,5+0,05\cdot C_{BX})$
	Пары нефти			±5
	Пары керосина			±5
	Пары топлива			±5
	авиационного			
	Пары бензина			±5
	авиационного			-
	Пары топлива для			±5
	реактивных двигателей		от 0 до 50 (от 0 до 100)	1.5
	Пары топлива дизельного Пары бензина Пропиленоксид (C ₃ H ₆ O) 1.3-бутадиен (C ₄ H ₆)			±5 ±5
				_
				$\pm (2.5+0.05 \cdot CBX)$
	Этилацетат (CH ₃ COOC ₂ H ₅)			$\pm (2.5+0.05 \cdot CBX)$
	,			$\pm (2.5+0.1 \cdot \text{CBX})$
	Изобутан ((СН ₃) ₃ СН) Диэтиловый эфир (С ₄ Н ₁₀ О)			$\pm (2.5+0.05 \cdot CBX)$
ИК0(СхНу),	Диметиловый эфир (С4П10О)			$\pm (2,5+0,05\cdot CBX)$
ИК1(СхНу)	(C_2H_6O)			$\pm (2,5+0,05\cdot CBX)$
(пропан	Метанол (СН ₃ ОН)	% НКПР		$\pm (2,5+0,05\cdot C_{BX})$
C_3H_8	Этанол (C ₂ H ₅ OH)			$\pm (2,5+0,05 \cdot CBX)$
	Пропилен (C ₃ H ₆)			$\pm (2,5+0,05 \cdot CBX)$ $\pm (2,5+0,05 \cdot CBX)$
	Циклопентан (C ₅ H ₁₀)			$\pm (2,5+0,05 \cdot CBX)$
	Этан (С ₂ Н ₆)			$\pm (2,5+0,05 \cdot CBX)$
	Бутан (С ₄ H ₁₀)			$\pm (2,5+0,05\cdot CBX)$
	Пентан (С ₅ H ₁₂)			$\pm (2,5+0,05\cdot CBX)$
	Гексан (C ₆ H ₁₄)			$\pm (2,5+0,05\cdot C_{BX})$
	Гептан (С ₇ H ₁₆)			$\pm (2,5+0,05\cdot CBX)$
	Октан (С ₈ Н ₁₈)			$\pm (2,5+0,05\cdot C_{BX})$
	Уайт-спирит			±5
	Нафтил			±5
	Этилен (C ₂ H ₄)			$\pm (2,5+0,05\cdot C_{BX})$
	Ацетон (СН ₃ СОСН ₃)			$\pm (2,5+0,05\cdot CBX)$
	Бензол (С ₆ Н ₆)			$\pm (2,5+0,05\cdot CBX)$
	Толуол (C ₆ H ₅ CH ₃)			$\pm (2,5+0,05\cdot CBX)$
	Метил-трет-бутиловый			,
	эфир (С ₅ H ₁₂ O)			$\pm (2,5+0,05\cdot CBX)$
	Ксилол (С ₆ Н ₄ (СН ₃) ₂)			$\pm (2,5+0,1\cdot CBX)$
	Этилбензол (С ₈ Н ₁₀)			$\pm (2,5+0,05\cdot CBX)$

Обозначение КИ (поверочный компонент)	Определяемый компонент	ЕФВ	ДИ (диапазон показаний)	Предел допускаемой основной абсолютной погрешности (Дд)
ИК0(СхНу), ИК1(СхНу) (пропан С ₃ Н ₈)	Циклогексан (C ₆ H ₁₂) Оксид этилена (C ₂ H ₄ O) Бутилацетат (C ₆ H ₁₂ O) 2-бутанон (C ₄ H ₈ O) 1-бутанол (C ₄ H ₉ OH) Пропанол (C ₃ H ₈ O) Стирол (C ₈ H ₈)	% НКПР	от 0 до 50 (от 0 до 100)	$\begin{array}{c} \pm (2.5 + 0.05 \cdot \text{CBX}) \\ \pm (2.5 + 0.05 \cdot \text{CBX}) \\ \pm (2.5 + 0.1 \cdot \text{CBX}) \\ \pm (2.5 + 0.05 \cdot \text{CBX}) \\ \pm (2.5 + 0.1 \cdot \text{CBX}) \\ \pm (2.5 + 0.1 \cdot \text{CBX}) \\ \pm (2.5 + 0.1 \cdot \text{CBX}) \\ \pm 5 \end{array}$
ИК0(M-100), ИК1(M-100) (метан СН ₄)	Метан (СН ₄), газ природный (по метану)	% НКПР	от 0 до 100 (от 0 до 100)	± 5
ИК0(М-4,4), ИК1(М-4,4) (метан СН ₄)	Метан (СН ₄), газ природный (по метану)	объемная доля, %	от 0 до 4,4 (от 0 до 100)	± 0,22
ИК0(П-100), ИК1(П-100) (пропан С ₃ Н ₈)	Пропан (С ₃ Н ₈), газ сжиженный (по пропану)	% НКПР	от 0 до 100 (от 0 до 100)	± 5
ИК0(П-1,7), ИК1(П-1,7) (пропан С ₃ H ₈)	Пропан (С ₃ Н ₈)	объемная доля, %	от 0 до 1,7 (от 0 до 100)	± 0,09
ИК1(ДУ-2)	Диоксид углерода (CO ₂)	объемная доля, %	от 0 до 2 (от 0 до 5)	± 0,1
ИК0(ДУ-5), ИК1(ДУ-5)	Диоксид углерода (CO ₂)	объемная доля, %	от 0 до 5 (от 0 до 10)	± 0,25
ИК1(ДУ-10)	Диоксид углерода (CO ₂)	объемная доля, %	от 0 до 10 (от 0 до 20)	± 0,5

Таблица 7 – Основные метрологические характеристики газоанализаторов по КИ ФИ

	Определяемый компонент/Поверочный		Диапазон	Участок ДИ, в котором нормированы пределы	Предел допускаемой основной абсолютной (Дд, мг/м³) или
Обозначение КИ	компонент (если отличен	ДИ, $M\Gamma/M^3$	показаний,	допускаемой основной	относительной (бд, %)
	от определяемого)		мг/м ³	погрешности	погрешности
AU(A	A (C.H.O)	0 2500	0 4000	от 0 до 200 включ.	$\Delta \pi = \pm 30 \text{ M}\Gamma/\text{M}^3$
ФИ(Ацетон)	Ацетон (C_3H_6O)	от 0 до 2500	от 0 до 4000	св. 200 до 2500	$\delta_{\rm A}=\pm 15~\%$
ФИ(Гауран 50)	Бензол (C ₆ H ₆)	от 0 до 50	от 0 до 100	от 0 до 5 включ.	$\Delta \mu = \pm 1.0 \text{ M}\text{F/M}^3$
ФИ(Бензол-50)	В ензол (С ₆ П ₆)	01 0 до 30	от 0 до 100	св. 5 до 50	$\delta_{\rm A}=\pm 20~\%$
ФИ/Бауран 2500)	Бензол (C ₆ H ₆)	от 0 до 3500	от 0 до 4000	от 0 до 50 включ.	$\Delta \chi = \pm 10 \text{ M}\Gamma/\text{M}^3$
ФИ(Бензол-3500)	в ензол (С6П6)	от 0 до 3300	500 01 0 до 4000	св. 50 до 3500	δ д = ± 20 %
ФИ(Бутадиен)	1,3- Бутадиен (С ₄ H ₆)	от 0 до 500	от 0 до 1000	от 0 до 100 включ.	Δ д = ± 20
Фи(бугадиен)	1,3- вугадиен (С4Н6)	01 0 до 300	01 0 до 1000	св. 100 до 500	δ д = ± 20
Φ И(Бутилацетат) Бутилацетат ($C_6H_{12}O_2$)	0 1000	от 0 до 2000	от 0 до 200 включ.	Δ д = ± 30	
	Вутилацетат (С6П12О2)	от 0 до 1000	01 0 до 2000	св. 200 до 1000	δ д = ± 15
ФИ(Гексан)	Гексан (C ₆ H ₁₄)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ.	$\Delta \chi = \pm 45 \text{ M}\Gamma/\text{M}^3$
ФИ(1 сксан)	1 CKCaH (C61114)			св. 300 до 3500	δ д = ± 15 %
ФИ(Н-гептан)	н-гептан (С7Н16)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ.	$\Delta \chi = \pm 45 \text{ M}\Gamma/\text{M}^3$
ФИ(П-ТСПТАН)	H-101114 (C/1116)	01 0 до 3300	01 0 до 4000	св. 300 до 3500	δ д = ± 15 %
ФИ(И-бутилен)	Изобутилен (і-С4Н8)	от 0 до 3500	от 0 до 4000	от 0 до 100 включ.	$\Delta \chi = \pm 15 \text{ мг/м}^3$
ФИ(И-бутилен)	11300y11111ch (1-C4118)	01 0 до 3300	01 0 до 4000	св. 100 до 3500	δ д = ± 15 %
ФИ(И-пентан)	Изопентан (i-C ₅ H ₁₂)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ.	$\Delta \chi = \pm 45 \text{ мг/м}^3$
Ψη(η-ηεπιαπ)	713011cH1aH (1-C51112)	01 0 до 3300	01 0 до 4000	св. 300 до 3500	δ д = ± 15 %
ФИ(ИзоПБ)	Изопропилбензол (С ₉ Н ₁₂)	от 0 до 500	от 0 до 1000	от 0 до 50 включ.	$\Delta \chi = \pm 10 \text{ мг/м}^3$
ΨΗ(H30Hb)	Promponium Cerritz	01 0 до 300	01 0 до 1000	св. 50 до 500	δ д = ± 20 %
ФИ(МТБЭ)	Метилтретбутиловый	от 0 до 3500	от 0 до 4000	от 0 до 100 включ.	$\Delta \chi = \pm 15 \text{ мг/м}^3$
**************************************	эфир (С ₅ H ₁₂ O)	01 0 до 3300	51 0 до 4000	св. 100 до 3500	δ д = ± 15 %
ФИ(О-ксилол)	1,2-диметилбензол	от 0 до 3500	от 0 до 4000	от 0 до 50 включ.	$\Delta \chi = \pm 7,5 \text{ M}\Gamma/\text{M}^3$
TI(O-KOMIOII)	$(C_6H_4(CH_3)_2)$	01 0 до 3300	от 0 до 4000	св. 50 до 3500	δ д = ± 15 %

цы /				
Определяемый компонент/Поверочный компонент (если отличен от определяемого)	ДИ, мг/м ³	Диапазон показаний, мг/м ³	Участок ДИ, в котором нормированы пределы допускаемой основной погрешности	Предел допускаемой основной абсолютной (Δд, мг/м³) или относительной (δд, %) погрешности
н-пентан (С ₅ H ₁₂)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ. св. 300 ло 3500	$\Delta \chi = \pm 45 \text{ M}\Gamma/\text{M}^3$ $\delta \chi = \pm 15 \text{ %}$
Пропанол (С ₃ Н ₇ ОН)	от 0 до 100	от 0 до 100	от 0 до 10 включ.	$\Delta \pi = \pm 2.5 \text{ M} \Gamma/\text{M}^3$ $\delta \pi = \pm 25 \%$
Пропилен (С ₃ Н ₆)	от 0 до 3500	от 0 до 4000	от 0 до 100 включ.	$\Delta \pi = \pm 15 \text{ M} \text{F/M}^3$ $\delta \pi = \pm 15 \text{ %}$
Пары сольвента (по	от 0 до 3500	от 0 до 4000	от 0 до 100 включ.	$\Delta \mu = \pm 15 \text{ M}^{2}$ $\Delta \mu = \pm 15 \text{ M}^{2}$ $\delta \mu = \pm 15 \text{ %}$
Стирол (С ₈ H ₈)	от 0 до 100	от 0 до 100	от 0 до 10 включ.	$\Delta \chi = \pm 2 \text{ M}\Gamma/\text{M}^3$
Толуол (С ₆ Н ₅ СН ₃)	от 0 до 500	от 0 до 1000	от 0 до 50 включ.	$δ_{\rm A} = \pm 20 \%$ $Δ_{\rm A} = \pm 7.5 \text{ M} \text{F/M}^3$
Толуол (С ₆ Н ₅ СН ₃)	от 0 до 2500	от 0 до 4000	от 0 до 500 включ.	$\delta_{\text{A}} = \pm 15 \%$ $\Delta_{\text{A}} = \pm 75 \text{ Mp/m}^3$
	, ,	, ,	от 0 до 50 включ.	$\delta_{\text{Д}} = \pm 15 \%$ $\Delta_{\text{Д}} = \pm 7,5 \text{ мг/м}^3$
Пары уайт-спирита (по			св. 50 до 3500 от 0 до 300 включ.	δ _Д = ±25 % Δ _Д = ±45 M Γ / M ³
гексану) / Гексан (С ₆ Н ₁₄)	, ,	, ,	св. 300 до 3500 от 0 до 5 включ.	$δ$ _{Ξ} = ±15 % $Δ$ _{Ξ} = ±1 M _{Ξ} / M
Фенол (С ₆ Н ₆ О)	от 0 до 50	от 0 до 50	св. 5 до 50	δ д = ± 20 %
Циклогексан (С ₆ H ₁₂)	от 0 до 800	от 0 до 800	св. 80 до 800	Δ д = ±12 мг/м ³ δ д = ±15 %
Этанол (С2Н5ОН)	от 0 до 2500	от 0 до 4000	от 0 до 1000 включ. св. 1000 до 2500	$\Delta_{\text{Д}} = \pm 150 \text{ M}\text{F/M}^3$ $\delta_{\text{Д}} = \pm 15 \text{ %}$
	Определяемый компонент/Поверочный компонент (если отличен от определяемого) н-пентан (С ₅ Н ₁₂) Пропанол (С ₃ Н ₇ ОН) Пропилен (С ₃ Н ₆) Пары сольвента (по гексану) / Гексан (С ₆ Н ₁₄) Стирол (С ₈ Н ₈) Толуол (С ₆ Н ₅ СН ₃) Толуол (С ₆ Н ₅ СН ₃) Трихлорэтилен (С ₂ НСІ ₃) Пары уайт-спирита (по гексану) / Гексан (С ₆ Н ₁₄) Фенол (С ₆ Н ₆ О) Циклогексан (С ₆ Н ₁₂)	Определяемый компонент/Поверочный компонент (если отличен от определяемого) н-пентан (С ₅ Н ₁₂) от 0 до 3500 Пропанол (С ₃ Н ₇ ОН) от 0 до 100 Пропилен (С ₃ Н ₆) от 0 до 3500 Пары сольвента (по гексану) / Гексан (С ₆ Н ₁₄) от 0 до 3500 Толуол (С ₈ Н ₈) от 0 до 100 Толуол (С ₆ Н ₅ СН ₃) от 0 до 500 Толуол (С ₆ Н ₅ СН ₃) от 0 до 2500 Трихлорэтилен (С ₂ НСІ ₃) от 0 до 3500 Пары уайт-спирита (по гексану) / Гексан (С ₆ Н ₁₄) от 0 до 3500 Пары уайт-спирита (по гексану) / Гексан (С ₆ Н ₁₄) от 0 до 3500 Фенол (С ₆ Н ₆ О) от 0 до 50 Циклогексан (С ₆ Н ₁₂) от 0 до 800	Определяемый компонент/Поверочный компонент (если отличен от определяемого) ДИ, мг/м³ Диапазон показаний, мг/м³ н-пентан (С₅Н₁2) от 0 до 3500 от 0 до 4000 Пропанол (С₃Н₂ОН) от 0 до 100 от 0 до 100 Пропилен (С₃Н₆) от 0 до 3500 от 0 до 4000 Пары сольвента (по гексану) / Гексан (С₆Н₁₄) от 0 до 3500 от 0 до 4000 Стирол (С₅Н₅С от 0 до 100 от 0 до 100 Толуол (С₆Н₅СН₃) от 0 до 500 от 0 до 1000 Толуол (С₆Н₅СН₃) от 0 до 2500 от 0 до 4000 Трихлорэтилен (С₂НСІ₃) от 0 до 3500 от 0 до 4000 Пары уайт-спирита (по гексану) / Гексан (С₆Н₁₄) от 0 до 3500 от 0 до 4000 Фенол (С₆Н₆О) от 0 до 50 от 0 до 50 Циклогексан (С₆Н₁₂) от 0 до 800 от 0 до 800	Определяемый компонент/Поверочный компонент (если отличен от определяемого) ДИ, мг/м³ Диапазон показаний, мг/м³ Участок ДИ, в котором нормированы пределы допускаемой основной потрешности н-пентан (C₅H₁2) от 0 до 3500 от 0 до 4000 от 0 до 300 включ. св. 300 до 3500 Пропанол (С₃Н₁ОН) от 0 до 100 от 0 до 100 от 0 до 100 Пропилен (С₃Н₀) от 0 до 3500 от 0 до 4000 от 0 до 100 включ. св. 10 до 100 Пары сольвента (по гексану) / Гексан (С₀Н₁4) от 0 до 3500 от 0 до 4000 от 0 до 100 включ. св. 100 до 3500 Стирол (С₀Н₅СН₃) от 0 до 500 от 0 до 100 от 0 до 100 от 0 до 100 Толуол (С₀Н₅СН₃) от 0 до 500 от 0 до 4000 от 0 до 50 включ. св. 50 до 500 от 0 до 500 включ. св. 50 до 500 Трихлорэтилен (С₂НСІз) от 0 до 3500 от 0 до 4000 от 0 до 500 включ. св. 50 до 3500 Пары уайт-спирита (по гексану) / Гексан (С₀Н₁4) от 0 до 3500 от 0 до 4000 от 0 до 3500 Фенол (С₀Н₀О) от 0 до 50 от 0 до 4000 от 0 до 3500 от 0 до 3500 От 0 до 50 от 0 до 50 от 0 до 60 включ. св. 50 до 50 от 0 до 3500 От 0 до 800 от 0 до 800

Обозначение КИ	Определяемый компонент/ Поверочный компонент (если отличен от определяемого)	ДИ, мг/м ³	Диапазон показаний, мг/м ³	Участок ДИ, в котором нормированы пределы допускаемой основной погрешности	Предел допускаемой основной абсолютной (Δд, мг/м³) или относительной (δд, %) погрешности
ФИ(Нефть)	Пары нефти (по гексану) / Гексан (C ₆ H ₁₄)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ. св. 300 до 3500	$\Delta \pi = \pm 45$ $\delta \pi = \pm 15$
ФИ(Бензин)	Пары бензина (по гексану) / Гексан (С ₆ H ₁₄)	от 0 до 3500	от 0 до 4000	от 0 до 100 включ. св. 100 до 3500	$\Delta \pi = \pm 25$ $\Delta \pi = \pm (25 + 0.15 \cdot (C_{BX} - 100))$
ФИ(Керосин)	Пары керосина (по гексану) / Гексан (С ₆ H ₁₄)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ. св. 300 до 3500	$\Delta \mathbf{\pi} = \pm 45$ $\delta \mathbf{\pi} = \pm 15$
ФИ(ДТ)	Пары дизельного топлива (по гексану) / Гексан (С ₆ H ₁₄)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ. св. 300 до 3500	$\Delta \mu = \pm 45$ $\delta \mu = \pm 15$
ФИ(АТ)	Пары авиационного топлива (по гексану) / Гексан (С ₆ H ₁₄)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ. св. 300 до 3500	$\Delta \chi = \pm 45$ $\delta \chi = \pm 15$
ФИ(РТ)	Пары топлива для реактивных двигателей (по гексану) / Гексан (C_6H_{14})	от 0 до 3500	от 0 до 4000	от 0 до 300 включ. св. 300 до 3500	$\Delta_{\text{A}} = \pm 45$ $\delta_{\text{A}} = \pm 15$
ФИ(БА)	Пары бензина авиационного (по гексану) / Гексан (С ₆ H ₁₄)	от 0 до 3500	от 0 до 4000	от 0 до 300 включ. св. 300 до 3500	$\Delta_{\text{Д}} = \pm 45$ $\delta_{\text{Д}} = \pm 15$

 $^{^{1)}}$ — Не применяется при контроле ПДК в воздухе рабочей зоны, только для аварийных ситуаций; Свх — массовая концентрация определяемого компонента на входе газоанализатора, мг/м 3 .

Таблица 8 – Характеристики погрешности

Наименование характеристики	Значение
Пределы допускаемой основной абсолютной погрешности КИ ТХ	
по определяемым компонентам, отличным от поверочного, $\Delta_{\rm Z}$, %	
НКПР, не более:	
а) для газоанализаторов с поверочным компонентом метан:	
- по водороду	±10,0
- по гексану	±10,0
б) для газоанализаторов с поверочным компонентом пропан:	
- по метану	±7,5
- по нонану	±10,0
в) для газоанализаторов с поверочным компонентом гексан:	
по пропану	±7,5
по декану	±15,0
Пределы допускаемой вариации показаний газоанализаторов в	
долях от пределов допускаемой основной абсолютной	
(относительной) погрешности	0,5
Нормальные условия измерений:	
- температура окружающей среды, °С	от 15 до 25
- относительная влажность, %	от 50 до 80
- атмосферное давление, кПа	от 97,3 до 105,3

Таблица 9 – Характеристики чувствительности газоанализаторов к влияющим величинам

Наименование характеристики	Значение
Пределы допускаемой суммарной дополнительной погрешности	
от воздействия неопределяемых компонентов, содержание	
которых приведено в таблице 10, в долях от пределов	
допускаемой основной абсолютной (относительной)	
погрешности	±2,0

Пределы допускаемой дополнительной погрешности газоанализаторов при изменении температуры окружающей среды в пределах условий эксплуатации от значений температуры, при которой определялась основная погрешность, соответствуют приведенным в таблице 11

Пределы допускаемой дополнительной погрешности газоанализаторов при изменении атмосферного давления в пределах условий эксплуатации от значения давления, при котором определялась основная погрешность, соответствуют приведенным в таблице 13

Пределы допускаемой дополнительной погрешности газоанализаторов при изменении относительной влажности анализируемой среды в пределах условий эксплуатации от номинального значения влажности 60 % при температуре (20 ± 5) °C соответствуют приведенным в таблице 14

Газоанализаторы выдерживают перегрузку, вызванную выходом содержания определяемого компонента за пределы измерений.

Определяемый (поверочный) компонент, содержание при перегрузке, время воздействия перегрузки, время восстановления показаний после снятия перегрузки соответствуют приведенным в таблице 15

Газоанализаторы соответствуют требованиям к основной погрешности при воздействии синусоидальной вибрации частотой от 10 до 55 Гц с амплитудой не более 0,35 мм

Прололжение таблины 9

продолжение таблицы у					
Наименование характеристики	Значение				
Газоанализаторы соответствуют требованиям к основной погрешности при изменении					
пространственного положения на 360° вокруг каждой из трех взаимно					
перпендикулярных осей.					
Газоанализаторы устойчивы к изменению напряжения встроенн	юй аккумуляторной				
батареи от 4,5 до 3,0 В.					

Таблица 10 – Содержание неопределяемых компонентов

	Содержание неопределяемых компонентов													
КИ	массовая концентрация, мг/м ³							объемная доля, %						
	CO	H_2S	SO_2	NO_2	Cl_2	HCl	NH ₃	CH ₃ OH	CH ₂ O	H_2	CO_2	CH ₄	C_3H_8	C_6H_{14}
TX	200	40	20	10	25	30	150	100	10		1			
ЭХ(О2-30)	200	40	20	10	25	30	150	100		_	1	1,1	0,43	0,25
ЭХ(СО-500), ЭХ(СО-200)		40	20	10	25	30	150	100			1	1,06	0,43	0,25
ЭХ(H2S-100), ЭХ(H2S-40), ЭХ(H2S-20)	200		20	10				100		_	1	1,06	0,43	0,25
ЭX(SO2-20)	200			10				100			1	1,06	0,43	0,25
ЭX(NO2-10)	200		20					100			1	1,06	0,43	0,25
ЭX(C12-25)	200							100			1	1,06	0,43	0,25
ЭX(HCl-30)	200							100			1	1,06	0,43	0,25
ЭX(NH3-150)	200		10	5				100			1	1,06	0,43	0,25
ЭХ(СН3ОН-100)	200			10	12						1	1,06	0,43	0,25
ЭХ(СН2О-10)	200			10	12	30	150	100			1	1,06	0,43	0,25
ЭX(HCN-50)	200						20				1	1,06	0,43	0,25
ИК0(М-100), ИК0(М-4,4)	200	40	20	10	25	30	150	100	10	1,7	5			
ИК1(М-100), ИК1(М-4,4)	200	40	20	10	25	30	150	100	10	1,7	5			
ИК0(П-100), ИК0(П-1,7),	200	40	20	10	25	30	150	100	10	1,7	5			
ИК0(СхНу), ИК1(СхНу)	200	40	20	10	25	30	150	100	10	1,7	5			
ИК1(СхНу)	200	40	20	10	25	30	150	100	10	1,7	5			
ИК0(ДУ-5)	200	40	20	10	25	30	150	100	10	1,7		4,4	0,43	0,25
ИК1(ДУ-2), ИК1(ДУ-5) ИК1(ДУ-10)	200	40	20	10	25	30	150	100	10	1,7		4,4	0,43	0,25
ФИ	200		20	20	12	15		100	10	1,7	1	1,06		

Таблица 11 – Предел допускаемой дополнительной погрешности при изменении температуры окружающей среды

температуры окружающей	и среды					
	Предел допускаемой дополнительной погрешности при					
	изменении	температуры окружа	ощей среды			
КИ	во всем диапазоне	в диапазоне	в диапазонах			
		в диапазоне рабочих значений ¹⁾	предельных			
	температуры рабочих значен		рабочих значений ¹⁾			
Bce TX	1,0Дд (1,0бд)	_	_			
ЭХ(О2-30)	1,0Δд					
3A(O2-30)	на каждые ±10 °C					
ЭХ(СО-500), ЭХ(СО-		0,6Дд	1,5Дд			
200)		на каждые ±10 °C	1,3ДД			
ЭX(H2S-100), ЭX(H2S-		0,6Дд	1,5∆д			
40), ЭX(H2S-20)		на каждые ±10 °C	1,3ДД			
ЭX(SO2-20), ЭX(Cl2-		0,6Дд	1,5∆д			
25), ЭX(HCl-30)		на каждые ±10 °C	1,3ДД			
ЭX(NO2-10)		1,0Δд	1,5Дд			
3X(NO2-10)		на каждые ±10 °C	1,5ДД			
ЭХ(NH3-150)		0,6Дд	1,5∆д			
,	_	на каждые ±10 °C	1,544			
$9X(CH3OH-100)^{2}$,		0,6Дд				
ЭX(CH2O-10) ²⁾	_	на каждые ±10 °C				
ЭX(HCN-50)		0,6Дд				
, ,		на каждые ± 10 °C				
ИК0(М-100), ИК0(М-						
4,4), ИК0(П-100),		1,0Дд	1,5Дд			
ИК0(П-1,7),		1,0ДД	1,5ДД			
ИК0(СхНу)						
ИК1(М-100), ИК1(М-						
4,4), ИК1(П-100),	1,0Δд					
ИК1(П-1,7),	1,0ДД		_			
ИК1(СхНу)						
ИК0(ДУ-5)	_	1,0Δд	1,5Дд			
ИК1(ДУ-2), ИК1(ДУ-	1,0Дд	_	<u>_</u>			
5), ИК1(ДУ-10)	1,0ДД					
ФИ	0,5 Дд (0,5 бд)		<u></u>			
AII	на каждые ±10 °C					

¹⁾ – См. таблицу 12;

Таблица 12 – Значение температуры воздуха при эксплуатации, °C

Tuotingu 12 Sha femire telimepuri pur bosajina npir skemi juruanin, e						
	Значение температуры воздуха при эксплуатации, °C					
КИ	Ниж	нее	Верхнее			
Kri	предельное рабочее	рабочее	рабочее	предельное рабочее		
TX		минус 40	плюс 50			
ЭХ(О2-30)		минус 40	плюс 50			
ЭX(CO-500), ЭX(CO-200)	минус 40	минус 30	плюс 45	плюс 50		

^{2) –} Диапазон рабочих значений температуры – от минус 20 до плюс 50 °C.

продолжение таолицы 12	Значение тем	пературы возду	уха при эксплу	атации, °С	
КИ	Ниж	нее	Верхнее		
IVI	предельное рабочее	рабочее	рабочее	предельное рабочее	
ЭX(H2S-100), ЭX(H2S-40), ЭX(H2S-20)	минус 40	минус 30	плюс 45	плюс 50	
ЭX(SO2-20), ЭX(NO2-10), ЭX(Cl2-25), ЭX(HCl-30), ЭX(NH3-150)	минус 40	минус 30	плюс 45	плюс 50	
ЭХ(СН3ОН-100)	_	минус 20	плюс 50		
ЭХ(СН2О-10)		минус 20	плюс 50		
ЭХ(НСN-50)		минус 30	плюс 50	_	
ИК0(M-100), ИК0(M-4,4), ИК0(П-100), ИК0(П-1,7), ИК0(СхНу)	минус 40	минус 10	плюс 40	плюс 50	
ИК1(M-100), ИК1(M-4,4), ИК1(П-100), ИК1(П-1,7), ИК1(СхНу)		минус 40	плюс 50	_	
ИК0(ДУ-5)	минус 40	минус 10	плюс 40	плюс 50	
ИК1(ДУ-2), ИК1(ДУ-5), ИК1(ДУ-10)		минус 40	плюс 50		
ФИ		минус 40	плюс 50		
1) – Знак «—» означает, что параметр не нормируется.					

Таблица 13 — Предел допускаемой дополнительной погрешности при изменении атмосферного давления

	Предел допускаемой дополни	ительной погрешности при		
КИ	изменении атмосферного давления			
	во всем диапазоне	на каждые 3,3 кПа		
Bce TX	1,0Дд (1,0бд)	_		
ЭX(O2-30)	_	0,5Дд		
ЭX(CO-500), ЭX(CO-200)	1,0∆д			
ЭX(H2S-100), ЭX(H2S-40),	1.04 7			
ЭX(H2S-20)	1,0Δд	_		
ЭX(SO2-20)	1,0Дд	_		
ЭX(NO2-10)	1,0Дд	_		
ЭX(Cl2-25)	1,0∆д			
ЭХ(НС1-30)	1,0∆д	_		
ЭX(NH3-150)	1,0∆д	_		
ЭХ(СН3ОН-100)		0,5Дд		
ЭХ(СН2О-10)	_	0,5Дд		
ЭX(HCN-50)	_	0,5Дд		
ИК0(М-100), ИК0(М-4,4),		0,5Дд		
ИК1(М-100), ИК1(М-4,4),		0,3ДД		

	Предел допускаемой дополнительной погрешности при			
КИ	изменении атмосферного давления			
	во всем диапазоне	на каждые 3,3 кПа		
ИК0(П-100), ИК0(П-1,7),		0,5Дд		
ИК1(П-100), ИК1(П-1,7)		0,3ДД		
ИК0(СхНу), ИК1(СхНу)		0,5Дд		
ИК1(ДУ-2), ИК0(ДУ-5),		0.84 =		
ИК1(ДУ-5), ИК1(ДУ-10)		0,8Δд		
Все ФИ	1,0Дд (1,0бд)	<u> </u>		

Таблица 14 — Предел допускаемой дополнительной погрешности при изменении относительной влажности анализируемой среды от номинального значения 60 %

Предел допускаемой дополнительной погрешности при изменении относительной влажности анализируемой среды от номинального значения 60 % во всем диапазоне На каждые 10 % относительной влажности Все ТХ 1,5Δд (1,5δд) — ЭХ(О2-30) 1,0Δд — ЭХ(Н2S-100), ЭХ(Н2S-40), ЭХ(Н2S-20) 1,0Δд — ЭХ(SO2-20) 1,0Δд — ЭХ(SO2-20) 1,0Δд — ЭХ(NO2-10) 1,0Δд — ЭХ(HCI-30) 1,0Δд — ЭХ(НСI-30) 1,0Δд — ЭХ(НЗ-150) 1,0Δд — ЭХ(СНЗОН-100) 1,0Δд — ЭХ(СНО-50) 1,0Δд — УК(ОК-100), ИК0(M-4,4), ИК0(M-100), ИК0(M-4,4), ИК0(M-100), ИК1(M-4,4), ИК1(M-100), ИК1(M-4,4), ИК1(M-100), ИК1(M-4,4), ИК1(M-100), ИК1(M-4,4), ИК1(M-100), ИК1(M-4,4), ИК1(M-100), ИК1(M-1,7) 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), ИК1(ДУ-5), ИК1(ДУ-5), ИК1(ДУ-5), ИК1(ДУ-5), ИК1(ДУ-5), ИК1(ДУ-5), ИК1(ДУ-6) — 0.5Δд (0.58π)	относительной влажности анализируемой среды от номинального значения 60 %					
КИ среды от номинального значения 60 % во всем диапазоне на каждые 10 % относительной влажности Все ТХ 1,5Δд (1,5δд) — ЭХ(О2-30) 1,0Δд — ЭХ(СО-500), ЭХ(СО-200) 1,0Δд — ЭХ(Н2S-100), ЭХ(Н2S-40), ЭХ(Н2S-20) 1,0Δд — ЭХ(ВО2-20) 1,0Δд — ЭХ(SO2-20) 1,0Δд — ЭХ(NO2-10) 1,0Δд — ЭХ(НСI-30) 1,0Δд — ЭХ(NH3-150) 1,0Δд — ЭХ(СН30H-100) 1,0Δд — ЭХ(СН2O-10) 1,0Δд — ЭХ(НCN-50) 1,0Δд — ИК0(M-100), ИК0(M-4,4), ИК0(П-100), ИК0(M-4,4), ИК1(П-100), ИК1(M-4,4), ИК1(П-100), ИК1(M-4,4), ИК1(П-100), ИК1(M-4,4), ИК1(П-100), ИК1(M-4,4), ИК1(СхНу) 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), ИК(ДУ-10) 1,5Δд —		•	1 1			
Все ТХ 1,5∆д (1,5δд) — ЭХ(О2-30) 1,0∆д — ЭХ(СО-500), ЭХ(СО-200) 1,0∆д — ЭХ(Н2S-100), ЭХ(Н2S-40), 1,0∆д — ЭХ(Н2S-20) 1,0∆д — ЭХ(SО2-20) 1,0∆д — ЭХ(NO2-10) 1,0∆д — ЭХ(C12-25) 1,0∆д — ЭХ(HC1-30) 1,0∆д — ЭХ(NH3-150) 1,0∆д — ЭХ(СН3ОН-100) 1,0∆д — ЭХ(СН2О-10) 1,0∆д — ЭХ(НСN-50) 1,0∆д — ИК0(M-100), ИК0(M-4,4), 1,5∆д — ИК1(M-100), ИК1(M-4,4), 1,5∆д — ИК0(СхНу), ИК1(СхНу) 1,5∆д — ИК0(ДУ-2), ИК0(ДУ-5), 1,5∆д — ИК1(ДУ-5), ИК0(ДУ-10) 1,5∆д —	ICII	± •				
Вов всем диапазоне относительной влажности Все ТХ 1,5Дд (1,5бд) — ЭХ(О2-30) 1,0Дд — ЭХ(СО-500), ЭХ(СО-200) 1,0Дд — ЭХ(Н2S-100), ЭХ(Н2S-40), ЭХ(Н2S-20) 1,0Дд — ЭХ(ВО2-20) 1,0Дд — ЭХ(ВО2-20) 1,0Дд — ЭХ(ВО2-10) 1,0Дд — ЭХ(НСI-30) 1,0Дд — ЭХ(ВНЗ-150) 1,0Дд — ЭХ(СНЗОН-100) 1,0Дд — ЭХ(СНЗОН-100) 1,0Дд — ЭХ(НСN-50) 1,0Дд — ИК0(M-100), ИК0(M-4,4), ИК0(П-1,7) 1,5Дд — ИК1(M-100), ИК1(M-4,4), ИК1(П-1,7) 1,5Дд — ИК0(СхНу), ИК1(СхНу) 1,5Дд — ИК0(ДУ-2), ИК0(ДУ-5), ИК(ДУ-5), ИК(ДУ-10) 1,5Дд —	КИ	среды от номинал				
Все ТХ		во всем лизпазоне				
ЭХ(О2-30) 1,0Δπ — ЭХ(СО-500), ЭХ(СО-200) 1,0Δπ — ЭХ(Н2S-100), ЭХ(Н2S-40), 1,0Δπ — ЭХ(SО2-20) 1,0Δπ — ЭХ(NО2-10) 1,0Δπ — ЭХ(С12-25) 1,0Δπ — ЭХ(НС1-30) 1,0Δπ — ЭХ(СН30Н-100) 1,0Δπ — ЭХ(СН30H-100) 1,0Δπ — ЭХ(СН2O-10) 1,0Δπ — ЭХ(НСN-50) 1,0Δπ — ИК0(M-100), ИК0(M-4,4), 1,5Δπ — ИК1(M-100), ИК1(M-4,4), 1,5Δπ — ИК0(СхНу), ИК1(СхНу) 1,5Δπ — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δπ — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δπ —		во веем днаназоне	относительной влажности			
ЭХ(СО-500), ЭХ(СО-200) 1,0Δд — ЭХ(Н2S-100), ЭХ(Н2S-40), 1,0Δд — ЭХ(Н2S-20) 1,0Δд — ЭХ(SO2-20) 1,0Δд — ЭХ(NO2-10) 1,0Δд — ЭХ(C12-25) 1,0Δд — ЭХ(НС1-30) 1,0Δд — ЭХ(СН30H-100) 1,0Δд — ЭХ(СН3OH-100) 1,0Δд — ЭХ(СН2O-10) 1,0Δд — ЭХ(НСN-50) 1,0Δд — ИК0(M-100), ИК0(M-4,4), 1,5Δд — ИК1(M-100), ИК1(M-4,4), 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	Bce TX	1,5Дд (1,58д)				
ЭХ(Н2S-100), ЭХ(Н2S-40), 1,0Δд — ЭХ(SO2-20) 1,0Δд — ЭХ(NO2-10) 1,0Δд — ЭХ(C12-25) 1,0Δд — ЭХ(HC1-30) 1,0Δд — ЭХ(NH3-150) 1,0Δд — ЭХ(СН3ОН-100) 1,0Δд — ЭХ(СН2О-10) 1,0Δд — ЭХ(НСN-50) 1,0Δд — ИК0(M-100), ИК0(M-4,4), 1,5Δд — ИК1(M-100), ИК1(M-4,4), 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭХ(О2-30)	1,0Δд	_			
ЭХ(H2S-20) 1,0Δд — ЭХ(NO2-10) 1,0Δд — ЭХ(NO2-10) 1,0Δд — ЭХ(C12-25) 1,0Δд — ЭХ(HC1-30) 1,0Δд — ЭХ(NH3-150) 1,0Δд — ЭХ(CH3OH-100) 1,0Δд — ЭХ(CH2O-10) 1,0Δд — ЭХ(HCN-50) 1,0Δд — ИК0(M-100), ИК0(M-4,4), 1,5Δд — ИК1(M-100), ИК1(M-4,4), 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭX(CO-500), ЭX(CO-200)	1,0Δд	_			
ЭХ(Н2S-20) 1,0Дд — ЭХ(NO2-10) 1,0Дд — ЭХ(C12-25) 1,0Дд — ЭХ(HC1-30) 1,0Дд — ЭХ(NH3-150) 1,0Дд — ЭХ(СН3ОН-100) 1,0Дд — ЭХ(СН2О-10) 1,0Дд — ЭХ(НСN-50) 1,0Дд — ИК0(М-100), ИК0(М-4,4), ИК0(П-100), ИК0(П-1,7) 1,5Дд — ИК1(П-100), ИК1(П-1,7) 1,5Дд — ИК0(СхНу), ИК1(СхНу) 1,5Дд — ИК0(ДУ-2), ИК0(ДУ-5), ИК1(ДУ-5), ИК(ДУ-10) 1,5Дд —	ЭX(H2S-100), ЭX(H2S-40),	1 0 4 =				
ЭХ(NO2-10) 1,0Дд — ЭХ(Cl2-25) 1,0Дд — ЭХ(HCl-30) 1,0Дд — ЭХ(NH3-150) 1,0Дд — ЭХ(CH3OH-100) 1,0Дд — ЭХ(CH2O-10) 1,0Дд — ЭХ(HCN-50) 1,0Дд — ИК0(M-100), ИК0(M-4,4), 1,5Дд — ИК1(M-100), ИК1(M-4,4), 1,5Дд — ИК0(СхНу), ИК1(СхНу) 1,5Дд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Дд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Дд —	ЭX(H2S-20)	1,0ДД				
ЭХ(С12-25) 1,0Δд — ЭХ(НС1-30) 1,0Δд — ЭХ(NH3-150) 1,0Δд — ЭХ(СН3ОН-100) 1,0Δд — ЭХ(СН2О-10) 1,0Δд — ЭХ(НСN-50) 1,0Δд — ИК0(М-100), ИК0(М-4,4), 1,5Δд — ИК1(М-100), ИК1(М-4,4), 1,5Δд — ИК0(Схну), ИК1(Схну) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭX(SO2-20)	1,0∆д				
ЭХ(НСІ-30) 1,0Δд — ЭХ(NH3-150) 1,0Δд — ЭХ(СН3ОН-100) 1,0Δд — ЭХ(СН2О-10) 1,0Δд — ЭХ(НСN-50) 1,0Δд — ИК0(М-100), ИК0(М-4,4), ИК0(П-100), ИК0(П-1,7) 1,5Δд — ИК1(М-100), ИК1(М-4,4), ИК1(П-100), ИК1(П-1,7) 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭХ(NO2-10)	1,0∆д				
ЭХ(NH3-150) 1,0Δд — ЭХ(СН3ОН-100) 1,0Δд — ЭХ(СН2О-10) 1,0Δд — ЭХ(НСN-50) 1,0Δд — ИК0(М-100), ИК0(М-4,4), 1,5Δд — ИК1(М-100), ИК1(М-4,4), 1,5Δд — ИК1(П-100), ИК1(П-1,7) 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭX(Cl2-25)	1,0∆д				
ЭХ(СН3ОН-100) 1,0Δд — ЭХ(СН2О-10) 1,0Δд — ЭХ(НСN-50) 1,0Δд — ИК0(М-100), ИК0(М-4,4), 1,5Δд — ИК1(М-100), ИК1(М-4,4), 1,5Δд — ИК1(П-100), ИК1(П-1,7) 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭХ(НС1-30)	1,0∆д				
ЭХ(СН2О-10) 1,0Δд — ЭХ(НСN-50) 1,0Δд — ИК0(М-100), ИК0(М-4,4), 1,5Δд — ИК1(М-100), ИК1(М-4,4), 1,5Δд — ИК1(П-100), ИК1(П-1,7) 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭX(NH3-150)	1,0Δд				
ЭХ(HCN-50) 1,0Δд — ИК0(M-100), ИК0(M-4,4), 1,5Δд — ИК1(M-100), ИК1(M-4,4), 1,5Δд — ИК1(П-100), ИК1(П-1,7) 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд — ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭХ(СН3ОН-100)	1,0Δд				
ИК0(M-100), ИК0(M-4,4), ИК0(П-100), ИК0(П-1,7) 1,5Δд — ИК1(M-100), ИК1(M-4,4), ИК1(П-100), ИК1(П-1,7) 1,5Δд — ИК0(СхНу), ИК1(СхНу) 1,5Δд — ИК0(ДУ-2), ИК0(ДУ-5), ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ЭХ(СН2О-10)	1,0∆д				
ИК0(П-100), ИК0(П-1,7) 1,5Δд ИК1(М-100), ИК1(М-4,4), 1,5Δд ИК1(П-100), ИК1(П-1,7) 1,5Δд ИК0(СхНу), ИК1(СхНу) 1,5Δд ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд	ЭХ(НСN-50)	1,0∆д				
ИК0(П-100), ИК0(П-1,7) ИК1(М-100), ИК1(М-4,4), 1,5Δд ИК1(П-100), ИК1(П-1,7) 1,5Δд ИК0(СхНу), ИК1(СхНу) 1,5Δд ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд	ИК0(М-100), ИК0(М-4,4),	1 5 A =				
ИК1(П-100), ИК1(П-1,7) 1,5ΔД ИК0(СхНу), ИК1(СхНу) 1,5Δд ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд	ИК0(П-100), ИК0(П-1,7)	1,3ДД				
ИК1(П-100), ИК1(П-1,7) ИК0(СхНу), ИК1(СхНу) 1,5Δд ИК0(ДУ-2), ИК0(ДУ-5), 1,5Δд ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд	ИК1(М-100), ИК1(М-4,4),	1 5 A -				
ИК0(ДУ-2), ИК0(ДУ-5), ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —		1,3ДД	_			
ИК0(ДУ-2), ИК0(ДУ-5), ИК1(ДУ-5), ИК(ДУ-10) 1,5Δд —	ИК0(СхНу), ИК1(СхНу)	1,5Δд				
$MK1(\mathcal{L}_{\mathbf{y}}-3), MK(\mathcal{L}_{\mathbf{y}}-10)$						
		1,5ДД	_			
0,3ДД (0,3ОД)	Все ФИ	<u> </u>	0,5Дд (0,5бд)			

Таблица 15 – Содержание определяемого (поверочного) компонента при перегрузке, время воздействия перегрузки, время восстановления показаний после воздействия перегрузки

	Поверочный компонент		Время
КИ	Химическая	Содержание при	воздействия/восстановления,
	формула	перегрузке	мин
ЭХ(О2-30)	Os	50 % объемной	10/5
JA(02-30)	O_2	доли	10/3

продолжение таолицы 15	Пореводи	ый компонент	Время
КИ	Химическая	Содержание при	воздействия/восстановления,
KH	формула	перегрузке	мин
ЭX(CO-500)	СО	600 мг/м ³	5/20
ЭX(CO-200)	CO	250 мг/м ³	5/20
ЭX(H2S-100)	H ₂ S	130 мг/м ³	5/20
ЭX(H2S-40)	H ₂ S	85 MΓ/M ³	5/20
ЭX(H2S-20)	H ₂ S	34 MΓ/M ³	5/20
ЭX(SO2-20)		34 MΓ/M ³	5/20
,	SO ₂		5/20
9X(NO2-10)	NO ₂	17 мг/м ³	5/20
9X(Cl2-25)	Cl ₂	45 MT/M ³	
9X(HCl-30)	HCl	45 мг/м ³	5/20
ЭX(NH3-150)	NH ₃	205 мг/м ³	5/20
ЭX(CH3OH-100)	CH ₃ OH	120 мг/м ³	5/60
ЭX(CH2O-10)	CH ₂ O	12 мг/м ³	5/60
ЭX(HCN-50)	HCN	56 мг/м ³	5/60
ИК0(М-100), ИК0(М-	G. T. T.	8,8 % объемной	2/20
4,4) ИК1(M-100),	CH ₄	доли	3/20
ИК1(М-4,4)		Assur.	
ИК0(П-100), ИК0(П-			3/20
1,7), ИК1(П-100),	C ₃ H ₈	3,0 % объемной	
ИК $1(\Pi-1,7)$ ИК $0(CxHy)$,	03118	доли	3/20
ИК1(СхНу)			
ИК1(ДУ-2), ИК0(ДУ-5),	CO_2	20 % объемной	10/5
ИК1(ДУ-5), ИК1(ДУ-10)		доли	
ФИ (Ацетон)	C ₃ H ₆ O	3250 мг/м ³	10/20
ФИ (Бензол-50)	C ₆ H ₆	65 мг/м ³	10/20
ФИ (Бензол-3500)		4550 мг/м ³	10/20
ФИ (Гексан)	C_6H_{14}	4600 мг/м ³	10/20
ФИ(Стирол)	C ₈ H ₈	130 мг/м ³	10/20
ФИ (Толуол-500)	C ₆ H ₅ CH ₃	650 мг/м ³	10/20
ФИ (Толуол-2500)	C6115C113	3250 мг/м^3	10/20
ФИ (И-бутилен)	i-C ₄ H ₈	4600 мг/м^3	10/10
ФИ (фенол)	C ₆ H ₆ O	65 мг/м ³	10/20
ФИ (Этанол)	C ₂ H ₅ OH	3250 мг/м ³	10/20
ФИ (Ц-гексан)	C ₆ H ₁₂	1040мг/м^3	10/20
ФИ (И-пентан)	i-C ₅ H ₁₂	4600 мг/м ³	10/20
ФИ (Н-пентан)	C ₅ H ₁₂	4600 мг/м ³	10/20
ФИ (О-ксилол)	$C_6H_4(CH_3)_2$	4600 мг/м ³	10/20
ФИ (ТриХЭ)	C ₂ HCl ₃	4600 мг/м ³	10/20
ФИ (Сольвент)	C ₆ H ₁₄	4600 мг/м ³	10/20
ФИ (Уайт-спирит)	C ₆ H ₁₄	4600 мг/м ³	10/20
ФИ (Н-гептан)	C ₇ H ₁₆	4600 мг/м ³	10/20
ФИ (МТБЭ)	C ₅ H ₁₂ O	4600 мг/м ³	10/20
ФИ (Пропанол)	C ₃ H ₇ OH	130 мг/м ³	10/20
ФИ (Пропилен)	C ₃ H ₆	4600 MΓ/M ³	10/20
ФИ (ИзоПБ)	C ₃ H ₁₂	650 мг/м ³	10/20
ФИ (Изопь)	C ₉ H ₁₂ C ₄ H ₆	650 мг/м ³	10/20
Фи (Бугадиен)	C4116	UJU MI/M	10/20

Окончание таблицы 15

	Поверочный компонент		Время
КИ	Химическая	Содержание при	воздействия/восстановления,
	формула	перегрузке	мин
ФИ (Бутилацетат)	$C_6H_{12}O_2$	1300 мг/м^3	10/20
ФИ (Нефть)	C_6H_{14}	4600 мг/м^3	10/20
ФИ (Бензин)	C ₆ H ₁₄	4600 мг/м ³	10/20
ФИ (Керосин)	C_6H_{14}	4600 мг/м^3	10/20
ФИ (ДТ)	C ₆ H ₁₄	4600 мг/м ³	10/20
ФИ (АТ)	C_6H_{14}	4600мг/м^3	10/20
ФИ (РТ)	C ₆ H ₁₄	4600 мг/м ³	10/20
ФИ (БА)	C ₆ H ₁₄	4600 мг/м ³	10/20

Таблица 16 – Динамические характеристики

Наименование параметра	Значение
Время прогрева газоанализаторов, мин, не более:	
- по КИ ТХ	2
- по КИ ИК	2
- по КИ ЭХ	5
- по КИ ФИ	5

Время срабатывания сигнализации при содержании определяемого компонента в 1,6 раза превышающем значение уставки срабатывания, пределы времени установления показаний не более значений, приведенных в таблице 17.

Пределы допускаемого изменения показаний газоанализаторов за	
время непрерывной работы от включения до срабатывания	
сигнализации РАЗРЯД АБ	$0,5\Delta$ Д $(0,5\delta$ Д)
Пределы допускаемого изменения показаний газоанализаторов за	
время непрерывной работы от срабатывания сигнализации	
РАЗРЯД АБ до автоматического отключения газоанализаторов	
вследствие полного разряда АБ	$0,5\Delta_{\mathrm{Д}}(0,5\delta_{\mathrm{Д}})$
Предел допускаемого интервала времени работы газоанализаторов	
без корректировки показаний по ПГС	6 месяцев

Таблица 17 – Время срабатывания сигнализации, предел времени установления показаний

	КИ	Время срабатывания сигнализации,	устано	времени овления аний, с Т _{0.9}
TX(M-50), TX(M-100	0)	10		15
$TX(\Pi-50), TX(\Pi-100)$		10		15
$TX(\Gamma)$		15		40
TX(B)		15		40
ЭХ(О2-30)		15		30
ЭХ(СО-500), ЭХ(СО	-200)	15		30
ЭХ(Н2S-100), ЭХ(Н2	2S-40), ЭX(H2S-20)	15		30
ЭX(SO2-20)		30		60
ЭX(NO2-10)		30		60
ЭX(Cl2-25)		_		90
ЭХ(НС1-30)		_	_	180

КИ	Время срабатывания сигнализации, с	устано	времени вления ний, с Т _{0.9}
ЭX(NH3-150)			180
ЭХ(СН3ОН-100)	_		900
ЭХ(СН2О-10)			300
ЭX(HCN-50)	_	_	120
ИК0(М-100), ИК0(М-4,4)	10	10	20
ИК1(М-100), ИК1(М-4,4)	15	15	40
ИК0(П-100), ИК0(П-1,7)	10	10	20
ИК1(П-100), ИК1(П-1,7)	15	15	40
ИК0(СхНу)	10	10	20
ИК1(СхНу)	15	15	40
ИК0(ДУ-5)	30		60
ИК1(ДУ-2), ИК1(ДУ-5), ИК1(ДУ-10)	30		60
ФИ(Гексан), ФИ(И-бутилен), ФИ(Этанол), ФИ(И-пентан), ФИ(И-пентан), ФИ(О-ксилол), ФИ(Н-пентан), ФИ(ТриХЭ), ФИ(Сольвент), ФИ(У-спирит), ФИ(Н-гептан), ФИ(МТБЭ), ФИ(Пропанол), И(Пропилен), ФИ(ИзоПБ), ФИ(Бутадиен), ФИ(Бутилацетат), ФИ(Нефть), ФИ(Бензин), ФИ(БА), ФИ(Керосин), ФИ(ДТ), ФИ(АТ), ФИ(РТ)	30		60
ФИ(Бензол), ФИ(Стирол), ФИ(Толуол), ФИ(Фенол), ФИ(Ц-гексан)	_	_	300

Таблица 18 – Основные технические характеристики

Наименование параметра	Значение
Электрическое питание газоанализаторов - от встроенного блока	
аккумуляторного напряжением, В	от 3,0 до 4,5
Габаритные размеры газоанализаторов, мм, не более:	
а) для базовых модификаций:	
- высота	120
- ширина	61
- длина (без зажима)	31
- длина (с зажимом)	47
б) для модификаций с индексами (-У) и (-УР) в обозначениях:	
- высота	120
- ширина	61
- длина (без зажима)	37
- длина (с зажимом)	47

Наименование параметра	Значение
Масса газоанализаторов (укомплектованных четырьмя КИ), кг:	
а) для базовых модификаций:	
- без зажима	0,22
- с зажимом	0,25
б) для модификаций с индексами (-У) и (-УР) в обозначениях:	
- без зажима	0,25
- с зажимом	0,29
Уровень звукового давления, создаваемого звуковой	
сигнализацией газоанализаторов на расстоянии 0,1 м по оси	
звукового излучателя, не менее, дБ	90

По устойчивости к воздействию климатических факторов окружающей среды по ГОСТ 15150 газоанализаторы соответствуют виду климатического исполнения:

- УХЛ1.1 в диапазоне рабочей температуры от минус 40 до плюс 50 °C;
- M1.1 для газоанализаторов, соответствующих требованиям Правил РМРС и Правил PPP;
- T, TB, TM категории размещения 1, 2, 3 и 4.1 для газоанализаторов, поставляемых на экспорт.

Условия эксплуатации газоанализаторов вида климатического	
исполнения УХЛ1.1, Т, ТВ, ТМ:	
	от - 40 до + 50
- диапазон температуры окружающей (анализируемой) среды,	01 - 40 до + 30
°C	
- верхнее значение относительной влажности окружающего	
воздуха при температуре 35 °C и более низких температурах, без	95
конденсации влаги, %	от 80,0 до 120,0
- диапазон атмосферного давления, кПа	от 600 до 900
мм рт. ст.	
- место размещения газоанализаторов – высота над уровнем	до 1000
моря, м	
- синусоидальная вибрация:	0,35
с амплитудой смещения, мм	от 10 до 55
частотой, Гц	произвольное
- рабочее положение	_
- содержание коррозионно-активных агентов в атмосфере на	
открытом воздухе соответствует типу атмосферы по ГОСТ 15150:	II
а) для климатического исполнения УХЛ1.1	III или IV
б) для климатического исполнения Т, ТВ, ТМ	
- содержание вредных веществ в анализируемой среде, не	
входящих в перечень контролируемых веществ и неопределяемых	
компонентов, не должно превышать уровней ПДК, установленных	
ГОСТ 12.1.005	
1001 12.1.003	

Окончание таблицы 18

Наименование параметра	Значение		
Газоанализаторы, изготовленные в соответствии с требованиями Правил РМРС и Правил			
РРР, по устойчивости к воздействию климатических факторов по ГОСТ 15150			
соответствуют климатическому исполнению М 1.1 для эксплуатаци	и в атмосфере типов		
III (морская) и IV (приморско-промышленная) по ГОСТ 15150.			
Средняя наработка до отказа газоанализаторов в условиях			
эксплуатации, приведенных выше, (допускается замена датчиков,			
выработавших свой ресурс) ч	35000		
Назначенный срок службы газоанализаторов в условиях			
эксплуатации, указанных выше, лет	10		
эксплуатации, указанных выше, лет	дованию группы II,		
эксплуатации, указанных выше, лет Газоанализаторы относятся к взрывозащищенному электрообору	дованию группы II, EC 60079-1.		
эксплуатации, указанных выше, лет Газоанализаторы относятся к взрывозащищенному электрообору соответствуют требованиям ГОСТ 31610.0, ГОСТ 31610.11, ГОСТ I	дованию группы II, EC 60079-1.		
эксплуатации, указанных выше, лет Газоанализаторы относятся к взрывозащищенному электрообору соответствуют требованиям ГОСТ 31610.0, ГОСТ 31610.11, ГОСТ I Маркировка взрывозащиты модификаций газоанализаторов соотве	дованию группы II, EC 60079-1.		
эксплуатации, указанных выше, лет Газоанализаторы относятся к взрывозащищенному электрообору соответствуют требованиям ГОСТ 31610.0, ГОСТ 31610.11, ГОСТ I Маркировка взрывозащиты модификаций газоанализаторов соотве в таблице 1.	дованию группы II, EC 60079-1.		
эксплуатации, указанных выше, лет Газоанализаторы относятся к взрывозащищенному электрообору соответствуют требованиям ГОСТ 31610.0, ГОСТ 31610.11, ГОСТ I Маркировка взрывозащиты модификаций газоанализаторов соотве в таблице 1. Класс защиты человека от поражения электрическим током по	дованию группы II, EC 60079-1. тствует приведенной		

- к средствам радиосвязи малого радиуса действия, группе I, классу 1 по ΓΟCT P 52459.3;
- к портативному оборудованию для использования в условиях электромагнитной обстановки, соответствующих жилым, коммерческим зонам и производственным зонам с малым энергопотреблением по ГОСТ 32134.1;
 - к группе 1 классу A по ГОСТ P 51318.11.

Знак утверждения типа

наносится на маркировочную табличку (см. рисунок 1) методом лазерной гравировки и на титульные листы руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

Таблица 19 – Комплектность средства измерений

Наименование	Обозначение	Количество
Газоанализатор АНКАТ-64М3.2-YY-ZZ 1)	ИБЯЛ.413411.065-XXX ¹⁾	1 шт.
Ведомость эксплуатационных документов	ИБЯЛ.413411.062 ВЭ	1 экз.
Комплект эксплуатационных документов 2)	-	1 комп.
Комплект ЗИП ³⁾	-	1 комп.

^{1) –} Обозначения (XXX) и условные наименования (YY-ZZ) модификаций - в соответствии с приведенными в таблице 1;

Сведения о методиках (методах) измерений

приведены в разделе 2 документа «ИБЯЛ.413411.065 РЭ Газоанализаторы АНКАТ-64М3.2. Руководство по эксплуатации».

^{2) –} Согласно ведомости эксплуатационных документов;

^{3) –} Согласно ведомости ЗИП.

Нормативные документы, устанавливающие требования к средству измерений

Приказ Федерального агентства по техническому регулированию и метрологии от 31 декабря 2020 г. № 2315 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»;

Постановление Правительства Российской Федерации от «16» ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений» (п. 4.43).

ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия»;

ГОСТ 12.2.091-2012 «Безопасность электрического оборудования для измерения, управления и лабораторного применения. Часть 1. Общие требования»;

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия»;

ИБЯЛ.413411.065 ТУ «Газоанализаторы АНКАТ-64М3.2 Технические условия».

Правообладатель

Федеральное государственное унитарное предприятие «Смоленское производственное объединение «Аналитприбор» (ФГУП «СПО «Аналитприбор»)

ИНН 6731002766

Адрес: 214031, г. Смоленск, ул. Бабушкина, д. 3

Телефон: 8-800-100-19-50, (4812) 31-12-42, 31-30-77, 31-06-78

Факс: (4812) 31-75-16, 31-75-17, 31-75-18

E-mail: info@analitpribor-smolensk.ru, market@analitpribor-smolensk.ru.

Web-сайт: www.analitpribor-smolensk.ru

Изготовители

Федеральное государственное унитарное предприятие «Смоленское производственное объединение «Аналитприбор» (ФГУП «СПО «Аналитприбор»)

ИНН 6731002766

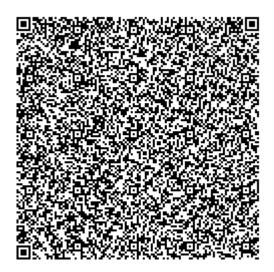
Адрес: 214031, г. Смоленск, ул. Бабушкина, д. 3

Телефон: 8-800-100-19-50, (4812) 31-12-42, 31-30-77, 31-06-78

Факс: (4812) 31-75-16, 31-75-17, 31-75-18

E-mail: info@analitpribor-smolensk.ru, market@analitpribor-smolensk.ru.

Web-сайт: www.analitpribor-smolensk.ru


Испытательный центр

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ» (ООО «ПРОММАШ ТЕСТ»)

Адрес: 119415, г. Москва, проспект Вернадского, дом 41, строение 1, этаж 4, помещение I, комната 28

E-mail: info@prommashtest.ru

Уникальный номер записи об аккредитации в реестре аккредитованных лиц RA.RU.312126

