УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «5» августа 2022 г. № 1926

Лист № 1 Всего листов 5

Регистрационный № 86343-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и показателей качества нефти № 263 на ПСП «Киенгоп» ПАО «Удмуртнефть» им. В.И. Кудинова

Назначение средства измерений

Система измерений количества и показателей качества нефти № 263 на ПСП «Киенгоп» ПАО «Удмуртнефть» им. В.И. Кудинова (далее по тексту — СИКН) предназначена для учетно-расчетных операций между ПАО «Удмуртнефть» им. В.И. Кудинова и Удмуртским РНУ АО «Транснефть-Прикамье».

Описание средства измерений

Принцип действия СИКН основан на использовании косвенного метода динамических измерений массы нефти с помощью преобразователей расхода жидкости турбинных МУТМ (далее по тексту — ТПР) по блоку измерительных линий (БИЛ) №1 и прямого метода динамических измерений массы нефти с помощью счетчиков-расходомеров массовых Місто Motion (далее по тексту — МПР) по БИЛ №2. Выходные электрические сигналы измерительных преобразователей ТПР и МПР поступают на соответствующие входы контроллера измерительного, который преобразует их и вычисляет массу нефти по реализованному в нем алгоритму.

Массу нетто нефти определяют как разность массы брутто нефти и массы балласта. Массу балласта определяют как сумму масс воды, хлористых солей и механических примесей в нефти.

СИКН представляет собой единичный экземпляр измерительной системы, спроектированной для конкретного объекта из компонентов серийного отечественного и импортного изготовления. Монтаж и наладка СИКН осуществлены непосредственно на объекте эксплуатации в соответствии с проектной документацией на СИКН и эксплуатационными документами на ее компоненты.

Конструктивно СИКН состоит из БИЛ №1, БИЛ №2, блока измерений показателей качества нефти (далее по тексту – БИК), блока стационарной поверочной установки (ПУ) и системы сбора и обработки информации (далее по тексту – СОИ). Технологическая обвязка и запорная арматура СИКН не допускает неконтролируемые пропуски и утечки нефти.

БИЛ №1 состоит из двух резервных измерительных линий (ИЛ) и одной контрольнорезервной ИЛ.

БИЛ №2 состоит из двух рабочих ИЛ.

БИК выполняет функции определения текущих показателей качества нефти и автоматического отбора проб для лабораторного контроля показателей качества нефти. Отбор представительной пробы нефти в БИК осуществляется по ГОСТ 2517-2012 через пробозаборное устройство.

СОИ обеспечивает сбор, хранение и обработку измерительной информации. В состав СОИ входят: контроллеры измерительные FloBoss S600 и S600+, осуществляющие сбор измерительной информации; автоматизированные рабочие места оператора (далее по тексту – APM оператора), формирующие отчетные данные и оснащенные средствами отображения, управления и печати.

В состав СИКН входят следующие средства измерений (СИ) (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее по тексту – рег. \mathbb{N}_2)), приведенные в таблице 1.

Таблица 1 – Состав СИКН

Наименование СИ	Рег. №
Счетчики-расходомеры массовые Micro Motion	13425-06
Счетчики-расходомеры массовые Micro Motion	45115-16
Преобразователи расхода жидкости турбинные MVTM	16128-97
Преобразователи давления измерительные 3051	14061-04,
	14061-10,
	14061-15
Преобразователи измерительные 644	14683-04
Термопреобразователи сопротивления платиновые серии 65	22257-05
Датчики температуры 644	39539-08
Датчики температуры Rosemount 644	63889-16
Влагомеры нефти поточные УДВН-1пм	14557-05,
	14557-10,
	14557-15
Преобразователи плотности измерительные модели 7835	15644-96
Преобразователи плотности жидкости измерительные модели 7835	15644-06
Преобразователи плотности и вязкости измерительные модели 7827	15642-96
Преобразователи плотности и вязкости жидкости измерительные модели 7829	15642-06
Устройства измерения параметров жидкости и газа 7951	15645-96
Контроллеры измерительные FloBoss S600	14661-02
Контроллеры измерительные FloBoss S600+	64224-16
Счетчики жидкости турбинные МИГ	26776-04
Преобразователи расхода турбинные МИГ-М	65199-16

В состав СИКН входят показывающие СИ давления и температуры, применяемые для контроля технологичесиких режимов работы СИКН.

СИКН обеспечивает выполнение следующих функций:

- автоматическое измерение объемного $(m^3/4)$ и массового (T/4) расхода нефти в рабочем диапазоне;
 - автоматическое измерений массы брутто нефти в рабочем диапазоне расхода (т);
- автоматическое измерение температуры (°C), давления (МПа), плотности (кг/м 3), вязкости (мм 2 /с) и объемной доли воды (%) в нефти;
- вычисление массы нетто нефти (т) с использованием результатов измерений содержания воды, хлористых солей и механических примесей в нефти;
- поверка и контроль метрологических характеристик ТПР и МПР по ПУ, КМХ резервных ТПР по контрольно-резервному ТПР;
 - автоматический и ручной отбор объединенной пробы нефти;
- регистрацию и хранение результатов измерений, формирование интервальных отчётов, протоколов, актов приема-сдачи нефти, паспортов качества нефти;
 - защита информации от несанкционированного доступа.

Для исключения возможности несанкционированного вмешательства, которое может влиять на показания СИ, входящих в состав СИКН, обеспечена возможность пломбирования в соответствии с МИ 3002-2006.

Знак утверждения типа наносится на титульный лист инструкции по эксплуатации СИКН типографским способом.

Заводской номер в виде цифрового обозначения, состоящего из арабских цифр, наносится типографским способом в инструкции по эксплуатации СИКН.

Нанесение знака поверки на СИКН не предусмотрено. Знак поверки наносится на свидетельство о поверке СИКН.

Программное обеспечение

обеспечивает реализацию функций СИКН. Метрологически значимая часть программного обеспечения (ПО) СИКН реализовано в контроллерах измерительных FloBoss S600 и S600+ и APM оператора. Идентификационные данные ПО СИКН приведены в таблицах 2 и 3. Уровень защиты ПО СИКН от непреднамеренных и преднамеренных изменений соответствует «среднему» в соответствии с Р 50.2.077-2014.

Таблица2 – Идентификационные данные ПО контроллеров измерительных

	Значение		
Идентификационные данные (признаки)	S600+	S600	S600
	3000+	(основной)	(резервный)
Идентификационное наименование ПО	_	_	_
Номер версии (идентификационный номер) ПО	06.30	05.42	05.42
Цифровой идентификатор ПО	e508	eaac	e48c
Алгоритм вычисления цифрового идентификатора	_	_	_

Т а б л и ц а 3 – Идентификационные данные ПО АРМ оператора

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	"Cropos"
Номер версии (идентификационный номер) ПО	1.0.0.8
Цифровой идентификатор ПО	78EAA947
Алгоритм вычисления цифрового идентификатора	CRC32

Метрологические и технические характеристики

Таблица4 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений объемного расхода через СИКН по БИЛ №1, м ³ /ч	от 203 до 1166
Диапазон измерений массового расхода через СИКН по БИЛ №2, т/ч	от 150 до 1000
Пределы допускаемой относительной погрешности измерений массы	
брутто нефти, %	$\pm 0,\!25$
Пределы допускаемой относительной погрешности измерений массы	
нетто нефти, %	± 0.35

Таблица5 – Основные технические характеристики

Наименование характеристики	Значение
Измеряемая среда	нефть по
	ГОСТ Р 51858
Характеристики измеряемой среды:	
– температура, °C	от +15 до +45
 – плотность в рабочем диапазоне температуры, кг/м³ 	от 858 до 886
– давление, МПа	
- рабочее	0,5
- минимальное	0,24
- максимальное	1,0
– вязкость кинематическая в рабочем диапазоне температуры, мм ² /с	от 8 до 45
 – массовая доля воды, %, не более 	1,0
 – массовая концентрация хлористых солей, мг/дм³, не более 	900
 – массовая доля механических примесей, %, не более 	0,05
– давление насыщенных паров, кПа (мм рт.ст.)	66,7 (500)
– содержание свободного газа, %	не допускается
Параметры электрического питания:	
 напряжение переменного тока, В 	220±22, 380±38
– частота переменного тока, Гц	50±0,4
Условия эксплуатации:	
– температура окружающего воздуха, °С	от -50 до +50
– относительная влажность воздуха, %, не более	до 100 при +25°C
– атмосферное давление, кПа	100±5
Средний срок службы, лет, не менее	10
Средняя наработка на отказ, ч	20000
Режим работы СИКН	непрерывный

Знак утверждения типа

наносится на титульный лист инструкции по эксплуатации СИКН типографским способом.

Комплектность средства измерений

Таблицаб – Комплектность СИ

Наименование	Обозначение	Количество
Система измерений количества и показателей качества нефти № № 263 на ПСП «Киенгоп» ПАО «Удмуртнефть» им. В.И. Кудинова, зав. № 01	ı	1 шт.
Инструкция по эксплуатации	_	1 экз.

Сведения о методиках (методах) измерений

представлены в документе МН 1173-2022 «ГСИ. Масса нефти. Методика измерений системой измерений количества и показателей качества нефти № 263 на ПСП «Киенгоп» ПАО «Удмуртнефть» им В.И. Кудинова», свидетельство об аттестации № RA.RU.310652-009/01-2022 (аттестат аккредитации № RA.RU.310652).

Нормативные документы, устанавливающие требования к средству измерений

Постановление Правительства Российской Федерации от 16 ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений»;

Приказ Росстандарта от 7 февраля2018 г. № 256 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости».

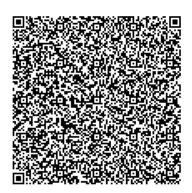
Правообладатель

Общество с ограниченной ответственностью «Итом-Прогресс» (ООО «Итом-Прогресс»)

ИНН 1841014518

Адрес: 426076, Удмуртская Республика, г. Ижевск, ул. Коммунаров, д. 175

Изготовитель


Общество с ограниченной ответственностью «Итом-Прогресс» (ООО «Итом-Прогресс»)

ИНН 1841014518

Адрес: 426076, Удмуртская Республика, г. Ижевск, ул. Коммунаров, д. 175

Испытательный центр

Акционерное общество «Нефтеавтоматика» (АО «Нефтеавтоматика») Адрес:420029, Республика Татарстан, г. Казань, ул. Журналистов, д. 2а Уникальный номер записи в реестре аккредитованных лиц № RA.RU.311366

