УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «26» августа 2022 г. № 2137

Лист № 1 Всего листов 4

Регистрационный № 86575-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная «Ионистор ICR»

Назначение средства измерений

Система измерительная «Ионистор ICR» (далее — система) предназначена для измерений электрических параметров конденсаторов с двойным электрическим слоем (далее — КДЭС) — электрической емкости, эквивалентного последовательного сопротивления (далее — ESR), тока утечки, а также автоматического управления процессом измерений и выдачи отчетных данных.

Описание средства измерений

Принцип действия системы состоит в том, что в каждом измерительном канале (далее – ИК) осуществляются воздействия на испытуемый КДЭС путем управляемого заряда и разряда, и выполняются измерения силы тока, электрического напряжения, интервалов времени осуществления этих воздействий с последующим вычислением электрических параметров конденсаторов по каждому испытуемому КДЭС и выдачей результатов измерений оператору, а также сохранением результатов в базе данных.

Система является двухуровневой, построенной по иерархическому принципу. Конструкция системы — блочно-модульная. Все компоненты системы размещены в специализированных шкафах в отдельном помещении, имеющем ограничение доступа.

ИК системы состоят из следующих компонентов:

- 1) комплексные компоненты (нижний уровень системы) измерительные приборы N8300 (всего 3 штуки по 10 ИК в каждом), используемые для измерения емкости и ESR, и измерительные приборы N8320 (всего 9 штук по 24 ИК в каждом), используемые для измерения тока утечки.
- 2) вычислительный компонент (верхний уровень системы) персональный компьютер с соответствующим программным обеспечением, обеспечивающим управление комплексными компонентами, обработку информации, возможность работы в локальной вычислительной сети и разграничение прав доступа к информации;
- 3) связующий компонент коммутатор, используемый для приема и передачи сигналов, несущих информацию об измеряемых величинах от одного компонента к другому.

Количество одновременно испытуемых КДЭС соответствует количеству задействованных ИК и составляет до 30 штук при измерении емкости и ESR и до 216 штук при измерении тока утечки.

Система является средством измерений единичного производства, заводской № 01. Общий вид средства измерений представлен на рисунке 1.

Рисунок 1 – Общий вид системы измерительной «Ионистор ICR»

Заводской номер наносится в руководство по эксплуатации печатным способом. Нанесение знака поверки на средство измерений не предусмотрено. Пломбирование компонентов системы не предусмотрено.

Программное обеспечение

Управление настройками приборов, входящих в состав ИК, обработка измерительной информации и вывод результатов производятся с помощью программного обеспечения (ПО).

Операционная система управляющего ПК – Microsoft Windows 10.

ПО включает в себя управляющие программы измерительных приборов N8300 и N8320.

ПО реализовано без выделения метрологически значимой части.

Таблица 1 — Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	NGI N8300	NGI N8320
Номер версии (идентификационный номер) ПО	не ниже V5.5.0.0	не ниже V3.4.1.0

Метрологические характеристики системы, указанные в таблице 2, нормированы с учетом влияния Π O.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений – «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение	
Диапазон регулирования и измерений электрического	от 0,01 до 6	
напряжения, В	01 0,01 до 0	
Пределы допускаемой приведенной погрешности		
измерений электрического напряжения, %	$\pm 0,3$	
(нормирующее значение 2,7 В)		
Диапазон регулирования и измерений силы тока заряда и	от 10 до 2000	
разряда, мА	01 10 до 2000	
Пределы допускаемой приведенной погрешности		
измерений силы тока заряда и разряда, %	$\pm 0,5$	
(нормирующее значение 2000 мА)		
Диапазон измерений силы тока утечки, мА	от 0,001 до 1000	
Пределы допускаемой относительной погрешности	. 1	
измерений силы тока утечки, %	± 1	
Диапазон измерений интервалов времени, с	от 1 до 3600	
Пределы допускаемой абсолютной погрешности измерений	$\pm 0,2$	
интервалов времени, с	± 0,∠	

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	220 ± 22
- частота переменного тока, Гц	50 ± 0.5
Условия эксплуатации:	
- температура окружающей среды, °С	от +20 до +30
- относительная влажность воздуха, %, не более	80
Срок службы, лет, не менее	16

Знак утверждения типа

наносят на титульный лист руководства по эксплуатации системы печатным способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система измерительная	«Ионистор ICR»	1 шт.
«Система измерительная «Ионистор ICR». Руководство по эксплуатации	ЯАЕВ.4641 РЭ	1 экз.
Методика поверки	-	1 экз.

Сведения о методиках (методах) измерений

приведены в разделе 2 документа «Система измерительная «Ионистор ICR». Руководство по эксплуатации ЯАЕВ.4641 РЭ».

Нормативные документы, устанавливающие требования к системе измерительной «Ионистор ICR»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Правообладатель

Акционерное общество «Элеконд» (АО «Элеконд»)

ИНН 1827003592

Адрес: 427968, Удмуртская Республика, г. Сарапул, ул. Калинина, д. 3

Телефон (факс): (34147) 4-27-53, 4-32-48

Web-сайт: www.elecond.ru E-mail: elecond@elcudm.ru

Изготовитель

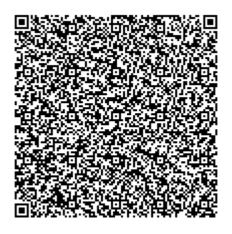
Акционерное общество «Элеконд» (АО «Элеконд»)

ИНН 1827003592

Адрес: 427968, Удмуртская Республика, г. Сарапул, ул. Калинина, д. 3

Телефон (факс): (34147) 4-27-53, 4-32-48

Web-сайт: www.elecond.ru E-mail: elecond@elcudm.ru


Испытательный центр

Уральский научно-исследовательский институт метрологии - филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева» (УНИИМ — филиал ФГУП «ВНИИМ им. Д.И.Менделеева»)

Адрес: 620075, г. Екатеринбург, ул. Красноармейская, д. 4 Телефон +7 (343) 350-26-18, факс +7 (343) 350-20-39

Web-сайт: www.uniim.ru E-mail: uniim@uniim.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.311373.

