УТВЕРЖДЕНО приказом Федерального агентства по техническому регулированию и метрологии

от «1» сентября 2022 г. № 2187

Регистрационный № 86641-22

Лист № 1 Всего листов 7

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС «Волокно»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС «Волокно» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее — ИИК), которые включают в себя трансформаторы тока (далее — ТТ), трансформаторы напряжения (далее — ТН) и счетчики активной и реактивной электроэнергии (далее — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень – информационно-вычислительный комплекс (далее – ИВК) ПС «Волокно», включающий в себя каналообразующую аппаратуру, сервер баз данных (далее – БД) АИИС КУЭ, автоматизированные рабочие места персонала (APM), устройство синхронизации времени (далее – УСВ) и программное обеспечение (далее – ПО) «АльфаЦЕНТР».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на сервер БД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ, на основе приемника сигналов точного времени получаемых по сигналам глобальных навигационных спутниковых систем (ГЛОНАСС/GPS). УСВ обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени УСВ более чем на ± 1 с. Часы счетчиков синхронизируются от сервера БД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и сервера БД более чем на ± 3 с.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты, секунды) коррекции часов.

Журналы событий сервера БД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки и заводского номера на АИИС КУЭ не предусмотрено. Заводской номер АИИС КУЭ: 021.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР», в состав которого входят модули, указанные в таблице 1. ПО «АльфаЦЕНТР» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами «АльфаЦЕНТР».

Таблица 1 – Идентификационные данные ПО

Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПО «АльфаЦЕНТР»		
	Библиотека ac_metrology.dll		
Номер версии (идентификационный номер) ПО	не ниже 12.01		
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

ПО «АльфаЦЕНТР» не влияет на метрологические характеристики измерительных каналов (далее – ИК) АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

Номер ИК	Наименование ИК	Измерительные компоненты				Рил	Метрологические характеристики ИК	
		TT	ТН	Счётчик	УСВ	Вид электро- энергии	Основная погрешность, %	Погреш- ность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	ПС Волокно ГПП-2 Ввод 1 ВЛ-110 кВ	ТБМО-110 УХЛ1 Кл. т. 0,2S	НАМИ-110 УХЛ1 Кл. т. 0,2	А1802RAL-P4G-DW-4 Кл. т. 0,2S/0,5 Рег. № 31857-11	УСВ-3 • Рег. №	активная	±0,6	±1,5
1		Ктт 200/1 Рег. № 23256-05	Ктн 110000:√3/100:√3 Рег. № 24218-08			реактивная	±1,3	±2,6
2	ПС Волокно ГПП-2 Ввод 2 ВЛ-110 кВ	ТБМО-110 УХЛ1 Кл. т. 0,2S	НАМИ-110 УХЛ1 Кл. т. 0,2	А1802RAL-P4G-DW-4 Кл. т. 0,2S/0,5 Рег. № 31857-11		активная	±0,6	±1,5
		Ктт 200/1 Рег. № 23256-05	Ктн 110000:√3/100:√3 Рег. № 24218-08			реактивная	±1,3	±2,6
3	ГПП-2 РУ-6 кВ Фидер 4	ТЛП-10 Кл. т. 0,2S	НОЛ.08 Кл. т. 0,5	А1805RAL-P4G-DW-3 Кл. т. 0,5S/1,0 Рег. № 31857-11	84823-22	активная	±1,0	±2,3
3		Ктт 1000/1 Рег. № 30709-05	Ктн 6000/100 Рег. № 3345-04			реактивная	±2,1	±4,2
4	ГПП-2 РУ-6 кВ Фидер 53	ТЛП-10 Кл. т. 0,2S	НОЛ.08 Кл. т. 0,5	А1805RAL-P4G-DW-3 Кл. т. 0,5S/1,0 Рег. № 31857-11		активная	±1,0	±2,3
		Ктт 1000/1 Рег. № 30709-05	Ктн 6000/100 Рег. № 3345-04			реактивная	±2,1	±4,2

Продолжение таблицы 2

1	2	2	1	5	4	7	0	0
1		3	4	3	O	/	ð	9
1 5 1	ТЛП-10 НОЛ.08 ГПП-2 РУ-6 кВ Кл. т. 0,2S Кл. т. 0,5		A1805RAL-P4G-DW-3 Кл. т. 0,5S/1,0		активная	±1,0	±2,3	
	Фидер 80	Ктт 500/1 Рег. № 30709-05	Ктн 6000/100 Рег. № 3345-04	Per. № 31857-11	УСВ-3 Рег. №	реактивная	±2,1	±4,2
6	ТЛП-10 ГПП-2 РУ-6 кВ Кл. т. 0,2S Фидер 84 Ктт 1000/1 Рег. № 30709-05	НОЛ.08 Кл. т. 0,5	A1805RAL-P4G-DW-3 Кл. т. 0,5S/1,0	84823-22	активная	±1,0	±2,3	
			Ктн 6000/100 Рег. № 3345-04	Рег. № 31857-11		реактивная	±2,1	±4,2
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с						=5		

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд $I=0.02(0.05) \cdot I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 6 от 0 до + 40 °C.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 5 Допускается замена УСВ на аналогичные утвержденных типов.
 - 6 Допускается замена сервера АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
 - 7 Допускается изменение наименований ИК, без изменения объекта измерений.
- 8 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

1 аолица 3 — Основные технические характеристики ИК	n		
Наименование характеристики	Значение		
Количество измерительных каналов	6		
Нормальные условия:			
параметры сети:			
- напряжение, % от Uном	от 99 до 101		
- ток, % от Іном	от 100 до 120		
- частота, Гц	от 49,85 до 50,15		
 коэффициент мощности соѕф 	0,9		
- температура окружающей среды, °С	от +21 до +25		
Условия эксплуатации:			
параметры сети:			
- напряжение, % от U _{ном}	от 90 до 110		
- TOK, % OT I _{HOM}	от 2 до 120		
- коэффициент мощности	от 0,5 инд до 0,8 емк		
- частота, Гц	от 49,6 до 50,4		
- температура окружающей среды для ТТ и ТН, °С	от -45 до +40		
- температура окружающей среды в месте расположения			
счетчиков, °С	от -40 до +65		
- температура окружающей среды в месте расположения			
сервера, °С	от +10 до +30		
Надежность применяемых в АИИС КУЭ компонентов:			
Счетчики:			
- среднее время наработки на отказ, ч, не менее:	120000		
- среднее время восстановления работоспособности, ч	2		
Сервер:			
- среднее время наработки на отказ, ч, не менее	70000		
- среднее время восстановления работоспособности, ч	1		
Глубина хранения информации	-		
Счетчики:			
- тридцатиминутный профиль нагрузки в двух направлениях,			
сут, не менее	114		
- при отключении питания, лет, не менее	30		
Сервер:			
- хранение результатов измерений и информации состояний			
средств измерений, лет, не менее	3,5		

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - сервера.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.	
Трансформатор тока	ТБМО-110 УХЛ1	6	
Трансформатор тока	ТЛП-10	8	
Трансформатор напряжения	НАМИ-110 УХЛ1	6	
Трансформатор напряжения	НОЛ.08	6	
Счётчик электрической энергии	A1802RAL-P4G-DW-4	2	
многофункциональный	A1802KAL-14G-DW-4	2	
Счётчик электрической энергии	A1805RAL-P4G-DW-3	4	
многофункциональный	A1003KAL-1 4G-D W-3	т	
Устройство синхронизации времени	УСВ-3	1	
Программное обеспечение	«АльфаЦЕНТР»	1	
Формуляр	ЭЛ.411711-021.10.ФО	1	

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС «Волокно», аттестованном ООО «Спецэнергопроект», уникальный номер записи об аккредитации в реестре аккредитованных лиц № RA.RU.312236.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания;

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Правообладатель

Акционерное общество «ТЕКСКОР»

(AO «TEKCKOP»)

ИНН 3435991384

Адрес: 404103, Россия, Волгоградская обл., г. Волжский, ул. Александрова, д. 63

Телефон: +7 (8443) 24-15-11 Факс: +7 (8443) 24-14-64

Изготовитель

Акционерное общество «ТЕКСКОР»

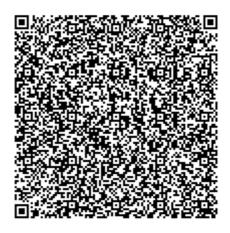
(AO «TEKCKOP»)

ИНН 3435991384

Адрес: 404103, Россия, Волгоградская обл., г. Волжский, ул. Александрова, д. 63

Телефон: +7 (8443) 24-15-11 Факс: +7 (8443) 24-14-64

Испытательный центр


Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, этаж 4, помещ. І, ком. 6, 7

Телефон: +7 (495) 410-28-81 E-mail: info@sepenergo.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312429.

