УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «05» сентября 2022 г. № 2203

Лист № 1 Всего листов 5

Регистрационный № 86693-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Датчики токсичных газов стационарные СДТГ

Назначение средства измерений

Датчики токсичных газов стационарные СДТГ (далее –датчики) предназначены для непрерывного измерения объемной доли оксида углерода в воздухе рабочей зоны.

Описание средства измерений

Принцип действия датчиков — электрохимический. На электродах химически активных измерительных элементов — электрохимических сенсоров — протекают окислительно-восстановительные реакции определяемых веществ, приводящие к возникновению электрических потенциалов, пропорциональных их концентрациям в анализируемом воздухе.

Конструктивно датчики представляют собой прямоугольную защитную оболочку, состоящую из аппаратного и вводного отделений со съемными крышками. Корпус датчика представляет из себя пластиковую защитную оболочку, в которую встроен или к которой присоединен с помощью кабеля электрохимический чувствительный элемент.

Способ забора пробы – диффузионный, а также с применением устройств принудительного отбора.

Структура условного обозначения датчиков:

	<u>СДП-XX.XX.XX</u> -00
Тип датчика —	
Обозначение определяемого газа и диапазона	
измерения:	
01 – оксид углерода	
Обозначение типа корпуса:	
0 – пластиковая защитная оболочка (тип 1);	
1 – пластиковая защитная оболочка (тип 2);	
Обозначение способа расположения чувствительного	
элемента: —	
1 – встроен в крышку аппаратного отделения;	
2 – встроен в нижнюю часть защитной оболочки.	
Обозначение типа напряжения питания постоянного	
тока:	
01 - 12 B	
Обозначение программно-аппаратного варианта (может	
не указываться)	

Общий вид датчиков с указанием мест пломбировки, места нанесения заводского номера приведены на рисунке 1.

Нанесение знака поверки на средство измерений не предусмотрено. Заводской номер в виде цифро-буквенного обозначения, состоящего из арабских цифр и букв латинского алфавита, наносится типографическим способом на маркировочную табличку в месте, указанном на рисунке 1.

а) чувствительный элемент встроен в крышку аппаратного отделения

б) чувствительный элемент встроен в нижнюю часть защитной оболочки

Рисунок 1 — Общий вид датчиков с указанием мест пломбировки, места нанесения заводского номера

Программное обеспечение

Встроенное ПО разделено на метрологически значимое (далее - МЗ) ПО и метрологически незначимое (далее - МНЗ) ПО. Вычисление значения контрольной суммы МЗ ПО производится на основании: номера модификации, нижнего и верхнего значения измеряемой концентрации и множителя концентрации. Это значение является уникальным для каждого исполнения датчика.

Уровень защиты встроенного ПО - «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО СИ и измеренные данные достаточно защищены с помощью специальных средств защиты от преднамеренных изменений.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	301009.000.000.000 SDTG_1.0.3	
Номер версии (идентификационный номер) ПО, не	M3: 301.009	
ниже	MH3: 1.0.3	
Цифровой идентификатор ПО	301.009	

Метрологические и технические характеристики

Таблица 2 – Основные метрологические характеристики

Наименование характеристики	Значение	
Диапазон измерений (показаний):		
- оксид углерода (CO, ПДК=17 млн ⁻¹), млн ⁻¹	от 0 до 50 (от 0 до 999)	
Пределы допускаемой основной абсолютной погрешности (Δ_0)		
датчика:		
- оксид углерода, млн ⁻¹	$\pm (2+0,1\cdot C_{BX})$	
	·	
$C_{\text{вх}}$ - объемная доля контролируемого газа на входе датчика, млн $^{\text{-}1}$.		

Таблица 3 – Прочие метрологические характеристики

Наименование характеристики	Значение		
Предел допускаемой вариации выходного сигнала, в долях от			
пределов допускаемой основной погрешности	0,5		
Пределы допускаемой дополнительной погрешности от			
изменения температуры окружающей среды от нормальной на			
каждые 10 °C, в долях от пределов допускаемой основной			
погрешности	$\pm 1,5$		
Пределы допускаемой дополнительной погрешности датчиков			
от влияния изменения относительной влажности			
анализируемой среды в диапазоне условий эксплуатации, в			
долях от пределов допускаемой основной погрешности	$\pm 0,5$		
Номинальное время установления выходного сигнала			
датчиков по уровню 0.9 ($T_{0.9}$), c, не более	120		

Таблица 4 – Основные технические характеристики

<u> </u>	
Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение постоянного тока, В	12
Потребляемая мощность, В-А, не более	0,18
Габаритные размеры ¹⁾ (ширина×длина×высота), мм, не более	140×320×100

Продолжение таблицы 4

Наименование характеристики	Значение
Масса, кг, не более	4,5
Условия эксплуатации:	
- температура окружающей среды, °С:	от -5 до +40
- относительная влажность, %, не более	95
- атмосферное давление, кПа	от 80 до 120
- содержания пыли, Γ/M^3 , не более	1,0
Время прогрева, секунд, не более	300
Средний срок службы, лет ²⁾	5
Средняя наработка на отказ, ч	15000
Маркировка взрывозащиты	PO Ex ia I Ma X
Степень защиты IP по ГОСТ 14254-2015	IP 54
1) — Без учета элементов крепления.	

^{2) –} Без учета срока службы чувствительного элемента.

Знак утверждения типа

наносится на маркировочную таблицу методом лазерной гравировки и на титульный лист руководства по эксплуатации и паспорта типографским способом

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество	
Датчик токсичного газа стационарный	-	1 шт.	
СДТГ			
Паспорт	ИГТ.301009.000.00.000ПС СДТГ	1 экз.	
Руководство по эксплуатации	ИГТ.301009.000.00.000РЭ СДТГ	1 экз.	
Специальный ключ	-	1 шт.1)	
Калибровочная насадка	-	1 шт.1)	
$^{1)}$ - не менее 1 на партию из пяти СДТГ.			

Сведения о методиках (методах) измерений

приведены в разделе «Устройство и работа» документа ИГТ.301009.000.00.000РЭ «Датчики токсичных газов стационарные СДТГ. Руководство по эксплуатации»

Нормативные документы, устанавливающие требования к средству измерений

Приказ Федерального агентства по техническому регулированию и метрологии от 31 декабря 2020 г. № 2315 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»;

Постановление Правительства Российской Федерации от 16 ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений»;

ТУ 4215-017-44645436-2006 Датчики токсичных газов стационарные СДТГ. Технические условия.

Правообладатель

Общество с ограниченной ответственностью «Информационные Горные Технологии» (ООО «Ингортех»)

ИНН 6659026925

Юридический адрес: 620144, Россия, г. Екатеринбург, ул. Хохрякова, 100, офис 1

Адрес: 620072, Россия, г. Екатеринбург, ул. Бетонщиков, д.5 стр.7

Телефон (факс): (343)318-01-71 Web-сайт: www.ingortech.ru E-mail: info@ingortech.ru

Изготовители

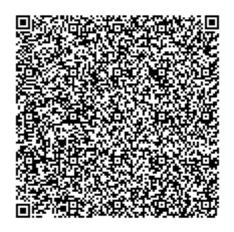
Общество с ограниченной ответственностью «Информационные Горные Технологии» (ООО «Ингортех»)

ИНН 6659026925

Юридический адрес: 620144, Россия, г. Екатеринбург, ул. Хохрякова, 100, офис 1

Адрес: 620072, Россия, г. Екатеринбург, ул. Бетонщиков, д.5 стр.7

Телефон (факс): (343)318-01-71 Web-сайт: www.ingortech.ru E-mail: info@ingortech.ru


Испытательный центр

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ» (ООО «ПРОММАШ ТЕСТ»)

Адрес: 119415, г. Москва, проспект Вернадского, дом 41, строение 1, этаж 4, помещение I, комната 28

Телефон: +7 (495) 481-33-80 E-mail: info@prommashtest.ru

Уникальный номер записи в реестре аккредитованных лиц: № RA.RU.312126.

