УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «20» сентября 2022 г. № 2319

Лист № 1

Регистрационный № 86808-22 Всего листов 5

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Каналы измерительные (электрическая часть) системы управления нештатными элементами и обвязки изделия (СУНЭ) ИС-102

Назначение средства измерений

Каналы измерительные (электрическая часть) системы управления нештатными элементами и обвязки изделия (СУНЭ) ИС-102 (далее – каналы или СУНЭ) предназначены для измерений силы постоянного электрического тока, электрического сопротивления.

Описание средства измерений

Принцип действия каналов измерительных (ИК) СУНЭ основан на преобразовании аналоговых электрических сигналов, поступающих от первичных измерительных преобразователей (ПИП) и стендовых преобразователей, в частотно-импульсные сигналы с помощью устройств аналого-частотного преобразования (АЧП), с последующим преобразованием с помощью быстродействующего 32 разрядного аналого-цифрового преобразования (АЦП) в цифровой код, с обработкой полученной информации и выдачей сигналов для формирования управляющего воздействия СУНЭ.

СУНЭ осуществляет регистрацию, отображение и хранение измеренной информации с помощью персональных ЭВМ.

В состав ИК СУНЭ входят следующие компоненты:

- аналого-частотные преобразователи типа АЧП4-01.Ex, АЧП5-03.Ex, предназначенные для преобразования аналоговых сигналов в частотные сигналы;
- блоки распределения сигналов типа БРС, предназначенные для размножения частотных сигналов;
- модули связи с контроллерами частотными SW-MCKЧ, предназначенные для преобразования частотных сигналов в цифровой код;
- сетевые индустриальные контроллеры СИКОН-М1, СИКОН-М3, с выходов которых по линии связи информация в формате сетевого интерфейса Ethernet поступает в локальную вычислительную сеть (ЛВС).

Заводской номер 29810/2014 в виде цифрового обозначения, который однозначно идентифицирует СУНЭ, указывается в формуляре. Нанесение знака поверки на корпуса стоек СУНЭ не предусмотрено.

Максимальное количество ИК СУНЭ с учетом возможности использования резервных каналов - 64. Полный перечень ИК СУНЭ приводится в формуляре.

Общий вид приборных стоек СУНЭ представлен на рисунке 1.

Рисунок 1 – Общий вид приборных стоек СУНЭ

Пломбирование не предусмотрено.

Программное обеспечение

Программное обеспечение (ПО) СУНЭ, предназначенное для реализации функций ИК СУНЭ состоит из следующих компонентов:

- программа подготовки исходных данных;
- «Программа пульта оператора»;
- программа пульта контроля и управления;
- программа «Инженерный пульт»;
- «Программа экспресс-обработки результатов испытаний»;
- динамически загружаемая библиотека «BaseCalcFunc.dll».

Программа подготовки исходных данных предназначена для создания и сопровождения базы исходных данных элементов автоматики.

«Программа пульта оператора» предназначена для управления дискретными элементами автоматики стенда и изделия, представления и регистрации информации, необходимой оператору.

Программа пульта контроля и управления предназначена для управления дискретными элементами автоматики стенда, разработки и отладки алгоритмов регулирования и контроля.

Программа «Инженерный пульт» предназначена для просмотра и анализа состояния каналов СУНЭ в режиме реального времени.

«Программа экспресс-обработки результатов испытаний» обеспечивает обработку и представление зарегистрированной информации.

Динамически загружаемая библиотека «BaseCalcFunc.dll» предназначена для преобразования информации измерительных каналов СУНЭ.

К метрологически значимой части ПО СУНЭ относится динамически загружаемая библиотека «BaseCalcFunc.dll». Остальные компоненты ПО относятся к метрологически не значимой части ПО.

Для защиты приборных стоек СУНЭ, с установленными в них компонентами, предусмотрено закрытие дверей стоек с оборудованием на ключ, сами стойки находятся в защищенном помещении (бункере).

Уровень защита ПО от непреднамеренных и преднамеренных изменений «среднему» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО указаны в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	10.70076.9-01
Номер версии (идентификационный номер ПО)	Версия 1
Цифровой идентификатор ПО	9DB1FB68
Алгоритм вычисления цифрового идентификатора программного обеспечения	CRC32(IEEE 1059-1993)

Метрологические и технические характеристики

Метрологические и технические характеристики СУНЭ приведены в таблицах 2, 3.

Таблица 2 - Метрологические характеристики СУНЭ

Измеряемая величина	Диапазон измерений	Состав ИК	Характеристики погрешностей в рабочих условиях
Сила постоянного тока	от 4 до 20 мА	АЧП4-01.Ex -> БРС -> SW-МСКЧ -> СИКОН-М3	$\gamma = \pm 0.20\%$
		АЧП4-01.Ex -> SW-MCKЧ -> СИКОН-М1	$\gamma = \pm 0.20\%$
Электрическое сопротивление	от 0 до 150 Ом	АЧП5-03.Ex -> БРС -> SW-МСКЧ -> СИКОН-М3	$\gamma = \pm 0.20\%$

Примечания:

Используемые обозначения:

γ - пределы допускаемых приведенных к диапазону измерений погрешностей в рабочих условиях;

Таблица 3 - Технические характеристики СУНЭ

Наименование параметра	Значение
Напряжение питающей сети переменного тока, В	от 207 до 253
Частота переменного напряжения питающей сети, Гц	от 49 до 51
Напряжение питающей сети постоянного тока, В	от 24 до 34
Рабочие условия применения:	
Температура окружающей среды, °С	от 5 до +35
Относительная влажность окружающего воздуха без конденсации, %	до 80
Атмосферное давление, кПа	от 84,0 до 106,0

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации 36.29810.000.000 РЭ «Система управления нештатными элементами и обвязки изделия (СУНЭ). Руководство по эксплуатации» типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность поставки

Наименование	Обозначение	Количество, шт.
Каналы измерительные (электрическая часть)		
системы управления нештатными элементами и	СУНЭ	1
обвязки изделия (СУНЭ) ИС-102		
Руководство по эксплуатации	36.29810.000.000 РЭ	1
Формуляр	36.29810.000.000 ФО	1

Сведения о методиках (методах) измерений

представлены в разделе «Приложение Б» руководства по эксплуатации

Нормативные и технические документы, устанавливающие требования к средству измерений

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения;

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

Приказ Росстандарта от 1 октября 2018 г. № 2091 «Об утверждении государственной поверочной схемы для средств измерений силы постоянного электрического тока в диапазоне от $1 \cdot 10^{-16}$ до 100 A»;

Приказ Росстандарта от 30 декабря 2019 г. № 3456 «Об утверждении государственной поверочной схемы для средств измерений электрического сопротивления постоянного и переменного тока».

Правообладатель

Федеральное казенное предприятие «Научно-испытательный центр ракетно-космической промышленности» (ФКП «НИЦ РКП»)

ИНН: 5042006211

Адрес: 141320, Московская обл., Сергиево-Посадский городской округ,

г. Пересвет, ул. Бабушкина, д. 9.

Телефон: (496) 546-33-21 Факс: (496) 546-76-98 Web-сайт: www.nic-rkp.ru E-mail: mail@nic-rkp.ru

Изготовитель

Федеральное казенное предприятие «Научно-испытательный центр ракетно-космической промышленности» (ФКП «НИЦ РКП»)

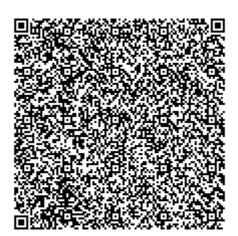
ИНН: 5042006211

Адрес: 141320, Московская обл., Сергиево-Посадский городской округ,

г. Пересвет, ул. Бабушкина, д. 9.

Телефон: (496) 546-33-21 Факс: (496) 546-76-98 Web-сайт: www.nic-rkp.ru E-mail: mail@nic-rkp.ru

Испытательный центр


Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

ИНН 9729315781

Адрес: 119361, Россия, г. Москва, ул. Озерная, д. 46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

