УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «17» октября 2022 г. № 2590

Регистрационный № 87096-22

Лист № 1 Всего листов 10

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РГМЭК» (МУП «РГРЭС» (7 очередь), ЗАО «Бизнестраст»)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РГМЭК» (МУП «РГРЭС» (7 очередь), ЗАО «Бизнестраст») (далее — АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (далее – ИИК), включающие в себя измерительные трансформаторы тока (далее – ТТ), измерительные трансформаторы напряжения (далее – ТН), счетчики активной и реактивной электроэнергии (далее – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень – информационно-вычислительный комплекс (далее – ИВК), включающий в себя сервер баз данных (далее – БД) МУП «РГРЭС», автоматизированные рабочие места персонала (далее – АРМ), устройство синхронизации времени УСВ-2 (далее – УСВ) МУП «РГРЭС», программное обеспечение (далее – ПО) ПК «Энергосфера» и каналообразующую аппаратуру.

3-й уровень – ИВК, включающий в себя сервер БД ООО «РГМЭК», АРМ, УСВ ООО «РГМЭК», ПО «Пирамида 2000» и каналообразующую аппаратуру.

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с.

Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков ИК №№ 155-158 поступает на сервер БД МУП «РГРЭС» в составе второго уровня АИИС КУЭ, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации.

Цифровой сигнал с выходов счетчиков ИК №№ 159-160 поступает на сервер БД ООО «РГМЭК» в составе третьего уровня АИИС КУЭ, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации.

На ИВК второго уровня АИИС КУЭ ежесуточно выполняется формирование и хранение поступающей информации, оформление справочных и отчетных документов, передача информации о результатах измерений, состоянии средств измерений в формате ХМС-макетов в ИВК третьего уровня АИИС КУЭ с помощью электронной почты по каналу связи по сети Internet по протоколу TCP/IP.

На верхнем ИВК третьего уровня АИИС КУЭ выполняется дальнейшая обработка измерительной информации, в частности, формирование, хранение поступающей информации, оформление справочных и отчетных документов.

Сервер БД ООО «РГМЭК» в составе третьего уровня АИИС КУЭ ежесуточно формирует и отправляет с помощью электронной почты по каналу связи по сети Internet по протоколу TCP/IP отчеты с результатами измерений в формате XML на APM субъекта оптового рынка электрической энергии и мощности (далее — OPЭМ), а также в филиал АО «СО ЕЭС» РДУ и всем заинтересованным субъектам ОРЭМ.

АРМ субъекта ОРЭМ по сети Internet с использованием электронной подписи (ЭП) раз в сутки формирует и отправляет с помощью электронной почты по каналу связи по протоколу TCP/IP отчеты с результатами измерений в формате XML в АО «АТС».

АИИС КУЭ имеет систему обеспечения единого времени (далее - СОЕВ), которая охватывает уровни ИИК, ИВК второго уровня АИИС КУЭ и ИВК третьего уровня АИИС КУЭ. АИИС КУЭ оснащена УСВ МУП «РГРЭС» в составе ИВК второго уровня АИИС КУЭ, принимающим сигналы точного времени ОТ навигационных спутниковых ГЛОНАСС/GPS; УСВ ООО «РГМЭК» в составе ИВК третьего уровня АИИС КУЭ, принимающим сигналы точного времени навигационных OT спутниковых ГЛОНАСС/GPS.

УСВ МУП «РГРЭС» в составе второго уровня АИИС КУЭ обеспечивает автоматическую коррекцию часов сервера БД МУП «РГРЭС». Коррекция часов сервера БД МУП «РГРЭС» проводится при расхождении часов сервера БД МУП «РГРЭС» и времени УСВ МУП «РГРЭС» не более чем на ± 5 с. Коррекция часов счетчиков для ИК №№ 155-158 проводится при расхождении часов счетчиков и времени сервера БД МУП «РГРЭС» более чем на ± 2 с.

УСВ ООО «РГМЭК» в составе третьего уровня АИИС КУЭ обеспечивает автоматическую коррекцию часов сервера БД ООО «РГМЭК». Коррекция часов сервера БД ООО «РГМЭК» проводится при расхождении часов сервера БД ООО «РГМЭК» и времени УСВ ООО «РГМЭК» не более чем на ± 5 с. Коррекция часов счетчиков для ИК №№ 159-160 проводится при расхождении часов счетчиков и времени сервера БД ООО «РГМЭК» более чем на ± 2 с.

Журналы событий счетчиков электроэнергии отражают время (дату, часы, минуты, секунды) коррекции часов указанных устройств.

Журналы событий сервера БД отражают время (дату, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки на средство измерений не предусмотрено.

Заводской номер указывается типографским способом в паспорте-формуляре АИИС КУЭ.

Программное обеспечение

В АИИС КУЭ используются:

1. ПО ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1.1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Конструкция средств измерений исключает возможность несанкционированного влияния на программное обеспечение и измерительную информацию.

Таблица 1.	1 – Идентиф	рикационные	данные ПО

Идентификационные признаки	Значение	
1	2	
Идентификационное наименование ПО	ПК «Энергосфера» Библиотека pso_metr.dll	
Номер версии (идентификационный номер) ПО	не ниже 1.1.1.1	
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B	
Алгоритм вычисления цифрового идентификатора ПО	MD5	

2. ПО «Пирамида 2000», в состав которого входят модули, указанные в таблице 1.2. ПО «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Пирамида 2000».

ПО «Пирамида 2000» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Конструкция средств измерений исключает возможность несанкционированного влияния на программное обеспечение и измерительную информацию.

Таблица 1.2 – Идентификационные данные ПО

Идентификационное наименование ПО	Номер версии (идентификационный номер) ПО	Цифровой идентификатор ПО	Алгоритм вычисления цифрового идентификатора ПО
1	2	3	4
CalcClients.dll	не ниже 1.0.0.0	E55712D0B1B219065D63DA94 9114DAE4	
CalcLeakage.dll	не ниже 1.0.0.0	B1959FF70BE1EB17C83F7B0F 6D4A132F	
CalcLosses.dll	не ниже 1.0.0.0	D79874D10FC2B156A0FDC27E 1CA480AC	
Metrology.dll	не ниже 1.0.0.0	52E28D7B608799BB3CCEA41 B548D2C83	
ParseBin.dll	не ниже 1.0.0.0	6F557F885B737261328CD7780 5BD1BA7	
ParseIEC.dll	не ниже 1.0.0.0	48E73A9283D1E66494521F63D 00B0D9F	MD5
ParseModbus.dll	не ниже 1.0.0.0	C391D64271ACF4055BB2A4D3 FE1F8F48	
ParsePiramida.dll	не ниже 1.0.0.0	ECF532935CA1A3FD3215049A F1FD979F	
SynchroNSI.dll	не ниже 1.0.0.0	530D9B0126F7CDC23ECD814 C4EB7CA09	
VerifyTime.dll	не ниже 1.0.0.0	1EA5429B261FB0E2884F5B356 A1D1E75	

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

		Измерительные компоненты				Метрологические характеристики ИК		
Номер ИК	Наименование ИК		Счётчик	УСВ	Вид электро- энергии	Основная погрешность, %	Погрешность в рабочих условиях,	
1	2	3	4	5	6	7	8	9
155	КТП-952 10 кВ, РУ-0,4 кВ,	Т-0,66 УЗ Кл. т. 0,5S	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5		активная	±0,8	±2,7
	ввод 0,4 кВ Т-1	Ктт 300/5 Рег. № 71031-18		Рег. № 36697-17		реактивная	±2,2	±5,1
156	РП-72 6 кВ, РУ-6 кВ,	ТПЛ-10-М Кл. т. 0,5S	НАМИТ-6 Кл. т. 0,5	СЭТ-4ТМ.03.01 Кл. т. 0,5S/1,0	УСВ-2 Рег.	активная	±1,5	±4,0
	1 с.ш. 6 кВ, яч. 8	Ктт 400/5 Рег. № 47958-16	Ктн 6000/100 Рег. № 70324-18	70324-18 Per. № 27524-04 y		реактивная	±2,8	±5,3
157	РП-72 6 кВ, РУ-6 кВ,	ТПЛ-10-М Кл. т. 0,5S	НАМИТ-6 Кл. т. 0,5	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5	Nº 41681-10	активная	±1,1	±2,8
137	2 с.ш. 6 кВ, яч. 7	Ктт 400/5 Рег. № 47958-16	Ктн 6000/100 Рег. № 70324-18	Рег. № 27524-04		реактивная	±2,6	±4,3
158	ТП-1 6 кВ ЖБИ-2, РУ-6 кВ,	ТОЛ-НТЗ-10 Кл. т. 0,5S	ЗНОЛ-СЭЩ-6 Кл. т. 0,2	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5		активная	±0,9	±2,8
150	1 с.ш. 6 кВ, яч. 1	Ктт 600/5 Рег. № 69606-17	Ктн 6000:√3/100:√3 Рег. № 71707-18	Рег. № 27524-04		реактивная	±2,3	±4,2

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
159	ПС 110 кВ ВЭМЗ, ЗРУ-6 кВ, 2 с.ш. 6 кВ, ф.708	ТПЛМ-10 Кл. т. 0,5 Ктт 400/5 Рег. № 2363-68	НАМИ-10 Кл. т. 0,2 Ктн 6000/100 Рег. № 11094-87	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-12	УСВ-2 Рег.	активная	±0,9 ±2,3	±3,0 ±5,5
160	ПС 110 кВ ВЭМЗ, ЗРУ-6 кВ, 1 с.ш. 6 кВ, ф.721	ТПОЛ-10 Кл. т. 0,5 Ктт 600/5 Рег. № 1261-59	ЗНОЛП-6 Кл. т. 0,5 Ктн 6000:√3/100:√3 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Per. № 36697-17	№ 41681-10	активная	±1,1 ±2,6	±3,1 ±5,6
	Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с					±	-5	

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд, $I=0.02(0.05) \cdot I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков для ИК №№ 155-160 от -40 до +60°C.
- 4. Кл. т. класс точности, Ктт коэффициент трансформации трансформаторов тока, Ктн коэффициент трансформации трансформационном напряжения, Рег. № регистрационный номер в Федеральном информационном фонде.
- 5. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 6. Допускается замена УСВ на аналогичные утвержденного типа.
- 7. Допускается замена сервера БД без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
- 8. Допускается изменение наименований ИК, без изменения объекта измерений.
- 9. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК АИИС КУЭ приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК АИИС КУЭ

1 аолица 3 — Основные технические характеристики ИК АИИС КУЭ					
Наименование характеристики	Значение				
1	2				
Количество измерительных каналов	6				
Нормальные условия:					
параметры сети:					
- напряжение, % от Uном	от 99 до 101				
- Tok, $\%$ ot I_{hom}	от 100 до 120				
- частота, Гц	от 49,85 до 50,15				
 коэффициент мощности соѕф 	0,9				
- температура окружающей среды, °С	от +21 до +25				
Условия эксплуатации:					
параметры сети:					
- напряжение, % от U _{ном}	от 90 до 110				
- ток, % от I _{ном} :	от 5 до 120				
- коэффициент мощности	от $0,5$ инд до $0,8$ емк				
- частота, Гц	от 49,5 до 50,5				
- температура окружающей среды в месте расположения					
ТТ и ТН, ℃	от -45 до +40				
- температура окружающей среды в месте расположения					
счетчиков, °С	от -40 до +60				
- температура окружающей среды в месте расположения					
УСВ, °С	от -10 до +50				
- температура окружающей среды в месте расположения	. 10 20				
сервера БД, °С	от +10 до +30				
Надежность применяемых в АИИС КУЭ компонентов:					
Счетчики электроэнергии:					
- среднее время наработки на отказ, ч, не менее:					
- для счетчиков СЭТ-4TM.03, СЭТ-4TM.03.01 (per. №	00000				
27524-04)	90000				
- для счетчиков СЭТ-4TM.03M (рег. № 36697-12)	165000				
- для счетчиков СЭТ-4TM.03M, СЭТ-4TM.03M.08	220000				
(рег. № 36697-17)	220000				
- среднее время восстановления работоспособности, ч	2				
УСВ:	25000				
- среднее время наработки на отказ, ч, не менее:	35000				
- среднее время восстановления работоспособности, ч	2				
Сервер БД:	70000				
- среднее время наработки на отказ, ч, не менее	70000				
- среднее время восстановления работоспособности, ч	1				

Продолжение таблицы 3

продолжение такинды з	
1	2
Глубина хранения информации	
Счетчики электроэнергии:	
- тридцатиминутный профиль нагрузки, сут, не менее	113
- при отключении питания, год, не менее	40
Сервер БД:	
- хранение результатов измерений и информации состояний	
средств измерений, год, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера БД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера БД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере БД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей тока и напряжения;
 - испытательной коробки;
 - сервера БД;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - сервера БД.

Возможность коррекции времени:

- счетчиков (функция автоматизирована);
- сервера БД (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 минут (функция автоматизирована);
- сбора 30 минут (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.	
1	2	3	
Трансформатор тока	Т-0,66 У3	3	
Трансформатор тока	ТПЛ-10-М	4	
Трансформатор тока	ТОЛ-НТЗ-10	2	
Трансформатор тока	ТПЛМ-10	2	
Трансформатор тока	ТПОЛ-10	2	
Трансформатор напряжения	НАМИТ-6	2	
Трансформатор напряжения	знол-сэщ-6	3	
Трансформатор напряжения	НАМИ-10	1	
Трансформатор напряжения	ЗНОЛП-6	3	
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03	2	
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03.01	1	
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M	1	
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M	1	
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.08	1	
Устройство синхронизации времени	УСВ-2	2	
Программное обеспечение	ПК «Энергосфера»	1	
Программное обеспечение	«Пирамида 2000»	1	
Паспорт-Формуляр	РЭСС.411711.АИИС.1062 ПФ	1	

Сведения о методиках (методах) измерений

приведены в документе «ГСИ. Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «РГМЭК» (МУП «РГРЭС» (7 очередь), ЗАО «Бизнестраст»), аттестованном ООО «МЦМО», уникальный номер записи об аккредитации в реестре аккредитованных лиц № 01.00324-2011.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Общество с ограниченной ответственностью «Рязанская городская муниципальная энергосбытовая компания»

(ООО «РГМЭК») ИНН 6229054695

Адрес: 390000, г. Рязань, ул. Радищева, д.61

Изготовитель

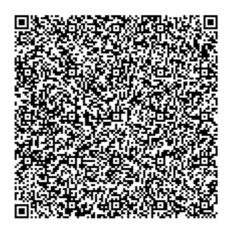
Общество с ограниченной ответственностью «Рязанская городская муниципальная энергосбытовая компания»

(ООО «РГМЭК») ИНН 6229054695

Адрес: 390000, г. Рязань, ул. Радищева, д.61 Телефон: 8 (4912) 70-20-10; 8 (4912) 70-20-40

E-mail: info@rgmek.ru

Испытательный центр


Акционерное общество «РЭС Групп»

(АО «РЭС Групп») ИНН 3328489050

Адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д. 23, оф. 9

Телефон: 8 (4922) 22-21-62 Факс: 8 (4922) 42-31-62 E-mail: post@orem.su

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312736.

