УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «31» октября 2022 г. № 2723

Лист № 1 Всего листов 7

Регистрационный № 87236-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры программируемые Elicont-200

Назначение средства измерений

Контроллеры программируемые Elicont-200 (далее - контроллеры) предназначены для измерений аналоговых сигналов напряжения и силы постоянного электрического тока, сигналов от термопар и термопреобразователей сопротивления, частоты импульсных сигналов, а также воспроизведение сигналов силы постоянного электрического тока.

Описание средства измерений

Контроллер построен по модульному принципу и представляет собой многофункциональный проектно-компонуемый комплекс программно-технических средств, имеющий большую гибкость при конфигурировании, что позволяет потребителю методом проектной компоновки выбирать необходимый аппаратный состав для решения различных задач управления, а также быстро перестраивать или наращивать контроллер в случае изменения параметров объекта управления. Конструкция контроллера позволяет встраивать его в стандартные монтажные шкафы или другое монтажное оборудование, защищающее от воздействий внешней среды.

В состав контроллера входят:

- модуль процессора (далее процессор), имеющий подсистему управления вводом/выводом информации, подсистему выполнения загруженной технологической программы и сетевую подсистему для информационной связи с другими контроллерами и со средствами системы представления информации и архивирования в ПТК;
- набор многоканальных устройств связи с объектом управления (модулей УСО), обеспечивающих обмен информацией процессора с объектом управления по физическим линиям. Все модули УСО контроллера компонуются в крейте контроллера либо в составе крейтов расширения. Набор модулей УСО определяется проектным путём;
 - модули системы электропитания контроллера.

Помимо сбора информации и управления с помощью каналов модулей УСО процессор может получать информацию и управлять периферийными интеллектуальными устройствами в контроллерной сети по протоколам Profibus DP и Modbus со спецификациями RTU и TCP.

Для связи с другими контроллерами, а также средствами представления и архивирования информации ПТК, Процессор имеет канал связи по системной сети Ethernet со стеком протоков TCP/IP и спецификацией OPC UA.

Общий вид контроллера с модулями в металлическом корпусе представлен на рисунке 1. Знак поверки наносится на свидетельство о поверке.

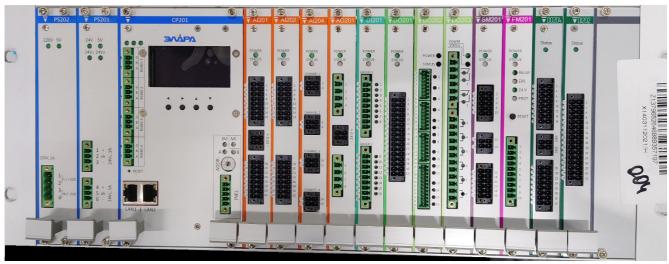


Рисунок 1 — Общий вид контроллера Elicont-200 с модулями в металлическом корпусе Пломбирование не предусмотрено.

Программное обеспечение

В состав программного обеспечения (ПО) входят:

- встроенное ПО модулей УСО;
- ПО верхнего уровня (ПО ВУ).

Встроенное ПО модулей УСО является метрологически значимым и устанавливается в энергонезависимую память модулей при изготовлении. Метрологические характеристики контроллеров нормированы с учетом влияния на них встроенного ПО. Конструкция модулей исключает возможность несанкционированного доступа к встроенному ПО и изменения измерительной информации. Уровень защиты встроенного ПО модулей УСО «высокий» в соответствии с п.4.5 рекомендации Р 50.2.077-2014.

ПО ВУ предназначено для конфигурирования контроллеров, анализа и отображения измерительной информации. Компоненты ПО ВУ объединены менеджером программных приложений с фирменным наименованием «Сфера».

Для защиты ПО ВУ и измерительной информации от несанкционированного доступа предусмотрено многоступенчатое разграничение прав доступа. Защита реализована с помощью различных паролей для каждого из уровней доступа к ПО. Уровень защиты ПО ВУ «средний» в соответствии с Р 50.2.077-2014.

Идентификационные данные программного обеспечения (ПО) контроллеров приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО контроллеров

Идентификационные данные (признаки)	Значение						
Идентификационное наименование ПО	AI 201	AI 202	AI 204	AO 201	FM 201	SM 201	ПО «Сфера»
Номер версии (идентификационный номер ПО)	Adc15_v5.hex	Adcl6_v11.hex	Adcl7_v2.hex	Dac11v3.hex	MKO11_v14.hex	Mtn11vl.hex	Не ниже 1.0.10.915
Цифровой идентификатор ПО	81C75A5F	59B37A07	CF7818F4	F0BB6094	AFB9618C	E7F74337	1
Алгоритм вычисления цифрового идентификатора ПО	CRC-32 по IEEE 802.3						

Метрологические и технические характеристики

Таблица 2 — Метрологические характеристики измерительных каналов контроллеров

аолица 2 — М	етрологические характеристи		oix kanasiob konipi	
	Диапазоны преобразований а		Пределы допускае-	
	налов/разрядность цифров		мой дополнитель-	
			Пределы	ной приведенной к
Модуль			допускаемой	диапазону измере-
УСО, коли-			основной приве-	ний погрешности
чество кана-	На входе	На выходе	денной к диапа-	от изменения тем-
лов			зону измерений	пературы окружаю-
			погрешности, %	щей среды в диапа-
			-	зоне рабочих тем-
				ператур, %/°С
1	2	3	4	5
AI201-00	Сигнал постоянного тока:			
8 каналов,	от 4 до 20 мА	14 бит	. 0.10	
AI201-01	от 0 до 20 мА	15 бит	±0,12	$\pm 0,005$
8 каналов	от 0 до 5 мА	13 бит		
A 1201 02	Напряжение постоянного			
AI201-02	тока:		$\pm 0,2$	± 0.012
8 каналов	от 0 до 10 В	15 бит	,	,
		Сила постоян-		
		ного тока:		
AO201	15 бит	от 4 до 20 мА	±0,2	$\pm 0.01^{1)}$
4 канала	16 бит	от 0 до 20 мА		-,
	14 бит	от 0 до 5 мА		
	Напряжение постоянного	, ,		
	тока:		±0,12	$\pm 0,005$
	от 0 до 50 мВ	15 бит	,	,
	Сигналы от термопар ²⁾			
	ТХА по ГОСТ Р 8.585-			
	2001:	14 бит		
	от 0 до +300 °C	14 бит	±0,15	$\pm 0,008$
AI202	от 0 до +600 °C	15 бит	,,,,,	,,,,,
8 каналов	от 0 до +1200 °C	15 бит		
	от 0 до +1300 °C			
АI204 4 канала	Сигналы от термопар ²⁾ ТХК			
	по ГОСТ Р 8.585-2001:			
	от 0 до +150 °C	14 бит	±0,15	$\pm 0,008$
	от 0 до +300 °C	14 бит	-,	-,
	от 0 до +600 °C	15 бит		
	Сигналы от термопар ²⁾ ТПР			
	(В) по ГОСТ Р 8.585-2001:		±0,15	$\pm 0,008$
	от 500 до +1820 °C	14 бит		2,000
	51200 до 1020 С	110111	<u> </u>	<u>l</u>

Продолжение таблицы 2

продолжени	не таолицы 2	Т	1	
1	2	3	4	5
	Сигналы от термопар $^{2)}$ ТПП (R) по ГОСТ Р 8.585-2001: от 0 до $+1760$ °C	14 бит	±0,15	$\pm 0,008$
	Сигналы от термопар ²⁾ ТПП (S) по ГОСТ Р 8.585-2001: от 0 до +1760 °C	14 бит	±0,15	$\pm 0,\!008$
АІ202 8 каналов	Сигналы от платиновых термопреобразователей сопротивления по ГОСТ 6651-2009: Pt-100 (α=0,00385), ТСП-100П (α=0,00391), ТСП-50П (α=0,00385 и 0,00391), ТСП-46 Ом, гр.21 по ГОСТ 6651-59 (α=0,00391) от 0 до +100 °C от 0 до +200 °C	13 бит 14 бит	± 0.15 для 4-х проводной схемы подключения ± 0.2 для 3-х проводной схемы под-	±0,005 для 4-х проводной схемы подклю- чения ±0,008 для 3-х проводной
АІ204 4 канала	от 0 до +400 °C от -50 до +50 °C от -50 до +150 °C	15 бит 13 бит 14 бит	ключения	схемы подключения 3)
	Сигналы от медных термопреобразователей сопротивления по ГОСТ 6651-2009: ТСМ-100М (α=0,00426 и 0,00428), ТСМ-50М (α=0,00426 и 0,00428), ТСМ-53 Ом, гр.23 по ГОСТ 6651-59 (α=0,00426) от 0 до +100 °C от 0 до +200 °C от -50 до +50 °C от -50 до+150 °C	13 бит 14 бит 13 бит 14 бит	±0,15% для 4-х проводной схемы подключения ±0,2 % для 3-х проводной схемы подключения	$\pm 0,005$ %/°C для 4-х проводной схемы подключения $\pm 0,008$ %/°C для 3-х проводной схемы подключения $\pm 0,008$
SM201 3 канала	Сигналы от платиновых термопреобразователей сопротивления $Pt100$ (α =0,00385) по ГОСТ 6651-2009: от -30 до +70 °C	15 бит	0,15 °C (абсолютная)	0,005 °C/°С (абсолютная)
FM201 1 канал	Частота импульсных сигналов ⁴⁾ от 2 до 10000 Гц	32 бит	тельной погрег	скаемой относи- шности в рабочих $\pm 0.003~\%$

Примечания

- 1. Пределы допускаемой дополнительной погрешности, приведенной к диапазону измерений, от влияния сопротивления нагрузки составляют ± 0.05 % на каждые 100 Ом при сопротивлении нагрузки в пределах допустимой (2,4 кОм для диапазона от 0 до 5 мА и 600 Ом для остальных диапазонов).
- 2. Погрешность указана без учета погрешности канала компенсации температуры холодного спая, который состоит из термопреобразователя сопротивления Ptl00 класса допуска А по ГОСТ 6651-2009 и модуля SM201.
- 3. Для трехпроводной схемы подключения пределы допускаемой дополнительной погрешности, приведенной к диапазону измерений, от влияния изменения сопротивления линий связи относительно номинального значения составляют $\pm 0,008$ % на 1 Ом

4. Характеристики импульсного сигнала: меандр с амплитудой (24 ± 6) В. Контроллер отображает входной сигнал модуля FM201 как значение частоты вращения $F_{\text{вращ}}$ в «об/мин», возможна настройка количества зубьев N. Номинальное значение измеряемой частоты вращения вычисляется по формуле:

 $F_{\text{вращ}} = F_{\text{вх}} \cdot 60/N$, где $F_{\text{вх}}$ — номинальное значение входного сигнала частоты импульсного сигнала, $\Gamma_{\text{Ц}}$

Таблица 3 – Технические характеристики контроллеров

Наименование характеристики	Значение	
Нормальные условия применения:		
-температура окружающей среды, °С	от +15 до +25	
- относительная влажность, %	до 98	
- атмосферное давление, кПа	от 66,0 до 106,7	
Рабочие условия применения:		
- температура окружающей среды, °С	от -40 до +70	
- относительная влажность при температуре +25°C, %	до 98	
- атмосферное давление, кПа	от 66,0 до 106,7	
Параметры электрического питания		
Напряжение постоянного тока, В	от 16 до 28	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации АДИГ.421457.012 РЭ типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность контроллера

Наименование	Обозначение	Количество		
Контроллер программируемый Elicont-200	АДИГ.421457.012	1 шт.*		
Паспорт	АДИГ.421457.012 ПС	1 экз.		
Руководство по эксплуатации	АДИГ.421457.012 РЭ	1 экз.		
Методика поверки	1	1 экз.		
Примечание: * - комплект поставки и состав контроллера указывается в паспорте				

Сведения о методиках (методах) измерений

приведены в разделе 3 «Работа проектно-скомпонованного Контроллера «El-200»» и разделе 4 «Использование Контроллера «El-200» по назначению» руководства по эксплуатации АДИГ.421457.012 РЭ.

Нормативные и технические документы, устанавливающие требования к средствам измерений

ГОСТ Р 51841-2001. Программируемые контроллеры. Общие технические требования и методы испытаний;

ГОСТ Р 52931-2008. Приборы контроля и регулирования технологических процессов. Общие технические условия;

АДИГ.421457.012 ТУ. Контроллеры программируемые «Elicont-200». Технические условия.

Правообладатель

Акционерное общество «Научно-производственный комплекс «ЭЛАРА» имени Г.А.Ильенко» (АО «ЭЛАРА»)

Адрес юридического лица и места осуществления деятельности: 428017, Россия, Чувашская Республика, г. Чебоксары, Московский просп., д. 40 ИНН 2129017646

Телефон: (499) 951-08-45 Web-сайт: https://www.elara.ru E-mail: inc@msk.elara.ru

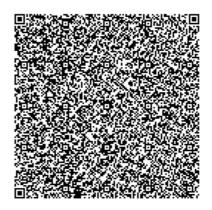
Изготовитель

Акционерное общество «Научно-производственный комплекс «ЭЛАРА» имени Г.А.Ильенко» (АО «ЭЛАРА»)

Адрес юридического лица и места осуществления деятельности: 428017, Россия, Чувашская Республика, г. Чебоксары, Московский просп., д. 40 ИНН 2129017646

Телефон: (499) 951-08-45 Web-сайт: https://www.elara.ru E-mail: inc@msk.elara.ru

Испытательный центр


Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

ИНН 9729315781

Адрес: 119361, Россия, г. Москва, ул. Озерная, д. 46

Телефон: (495) 437-55-77 Факс: (495) 430-57-25 Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

