УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «18» ноября 2022 г. № 2917

Лист № 1 Всего листов 7

Регистрационный № 87362-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная коммерческого учета тепловой энергии Ново-Стерлитамакской ТЭЦ — производственной площадки Стерлитамакской ТЭЦ ООО «БГК»

Назначение средства измерений

Система автоматизированная коммерческого учета тепловой энергии Ново-Стерлитамакской ТЭЦ – производственной площадки Стерлитамакской ТЭЦ ООО «БГК» (далее – система) предназначена для измерений температуры, разности температур, давления, расхода, объема, массы, количества тепловой энергии воды и пара.

Описание средства измерений

Принцип действия системы основан на непрерывном измерении количества и параметров теплоносителя измерительными компонентами с передачей измерительной информации по каналам связи на сервер с последующим хранением, обработкой и отображением.

Измерение расхода теплоносителя реализовано одним из следующих способов:

- методом переменного перепада давления на стандартном сужающем устройстве (диафрагме) по ГОСТ 8.568.2-2005;
- с помощью расходомеров жидкости.

Система представляет собой многофункциональную, проектно-компонуемую трехуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерений. Система спроектирована для конкретного объекта из компонентов серийного изготовления, принимается как законченное изделие непосредственно на объекте эксплуатации (ИС-2 согласно ГОСТ Р 8.596-2002). Система состоит из трех автономных блоков – узлов учета, обеспечивающих измерения на конкретных объектах.

Нижний уровень (1-й уровень) представлен первичными измерительными преобразователями. Для измерений тепловой энергии, параметров теплоносителя на трубопроводах установлены следующие ПИП:

- преобразователи расхода теплоносителя в числоимпульсный сигнал;
- преобразователи температуры теплоносителя в значение электрического сопротивления;
- преобразователи давления теплоносителя в значение силы постоянного электрического тока.

На среднем уровне (2-ом уровне) происходит преобразование сигналов с выходов первичных измерительных преобразователей поступающих на соответствующие входы тепловычислителей (по одному на каждый узел учета) в соответствующие значения объемного расхода, давления и температуры теплоносителя и вычисления объема и массы теплоносителя, разности температур и тепловой энергии теплоносителя. Вычисляются как мгновенные, так и средние и средневзвешенные за установленные период времени значения физических величин. Результаты измерений помещаются в архив (базу данных) тепловычислителей.

Результаты измерений и вычислений, выполненных тепловычислителями, по

проводным линиям связи в виде цифрового сигнала с заданной периодичностью поступают на верхний уровень (3-ий уровень) - в сервер информационно-вычислительного комплекса (далее – ИВК). ИВК включает в себя сервер базы данных, автоматизированные рабочие места (далее – APM), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижнего уровня, формирование справочных и отчетных документов, хранение измерительной информации и журналов событий в базе данных.

Измерительные компоненты, входящие в состав системы, являются средствами измерений утвержденного типа, перечень которых приведен в таблице 1. Перечень и состав измерительных каналов системы приведен в таблице 2.

Таблица 1 – Перечень средств измерений

№ 1)	Наименование	Рег. номер ²⁾	Кол-во
1	Тепловычислитель СПТ961 модификации СПТ 961.2	35477-07	1 шт.
	Расходомер жидкости ультразвуковой двухканальный	23363-07	1 шт.
	УРЖ2КМ		
	Комплект термометров сопротивления из платины технические		
	разностных КТПТР-01	14638-05	1 компл.
	Датчики давления МИДА-13П	17636-06	2 шт.
2	Тепловычислитель СПТ961	17029-98	1 шт.
	Расходомер-счетчик ультразвуковой многоканальный УРСВ		
	"ВЗЛЕТ МР"	28363-04	1 шт.
	Расходомер-счетчик ультразвуковой «ВЗЛЕТ МР»	28363-14	1 шт.
	Комплекты термометров сопротивления КТСП модели КТСП	38790-08	1 компл.
	Метран-206		
	Датчики давления Метран-100	22235-08	2 шт.
3	Тепловычислитель СПТ961 модификации СПТ961.2	35477-12	1 шт.
	Термометры сопротивления из платины и меди ТС		
	модификации ТС-1088	18131-09	2 шт.
	Датчики давления Метран-150	32854-13	
	– модели 150TG3		2 шт.
	– модели 150CD2		2 шт.

Примечание:

1) – порядковый номер узла учета в таблице 2

Таблица 2 – Перечень и состав ИК системы

Таолица 2 — Перечень и состав ит системы					
No	Наименование ИК	Средства измерений, входящие в состав ИК			
ИК		Первый уровень		Второй уровень	
YIK		Тип СИ	Рег. номер	Тип СИ	Рег. номер
	1. y 3	вел учета ТМ «Ка	устик»		
1.1	ИК давления (подающий трубопровод)	МИДА-13П	17636-06	СПТ961.2	35477-07
1.2	ИК давления (обратный трубопровод)	МИДА-13П	17636-06	СПТ961.2	35477-07
1.3	ИК температуры (подающий трубопровод)	КТПТР-01	14638-05	СПТ961.2	35477-07
1.4	ИК температуры (обратный трубопровод)	КТПТР-01	14638-05	СПТ961.2	35477-07

 $^{^{2)}}$ – регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений

		Средства измерений, входящие в состав ИК			
No	Наименование ИК	Первый уровень			
ИК		Тип СИ	Рег. номер	Тип СИ	Рег. номер
1.5	ИК объемного расхода (объема) (подающий трубопровод)	УРЖ2КМ DN 1000	23363-07	СПТ961.2	35477-07
1.6	ИК объемного расхода (объема) (обратный трубопровод)	УРЖ2КМ DN 1000	23363-07	СПТ961.2	35477-07
1.7	ИК массы (подающий трубопровод)	ИК №№ 1.1	, 1.3, 1.5	СПТ961.2	35477-07
1.8	ИК массы (обратный трубопровод)	ИК №№ 1.2	, 1.4, 1.6	СПТ961.2	35477-07
1.9	ИК разности температур	КТПТР-01	14638-05	СПТ961.2	35477-07
1.10	ИК тепловой энергии	_		СПТ961.2	35477-07
		Узел учета ТМ «Г	ород»	1	•
2.1	ИК давления (подающий трубопровод)	Метран-100	22235-08	СПТ961	17029-98
2.2	ИК давления (обратный трубопровод)	Метран-100	22235-08	СПТ961	17029-98
2.3	ИК температуры (подающий трубопровод)	КТСП Метран-206	38790-08	СПТ961	17029-98
2.4	ИК температуры (обратный трубопровод)	КТСП Метран-206	38790-08	СПТ961	17029-98
2.5	ИК объемного расхода (объема) (подающий трубопровод)	ВЗЛЕТ MP DN 1000	28363-14	СПТ961	17029-98
2.6	ИК объемного расхода (объема) (обратный трубопровод)	УРСВ "ВЗЛЕТ МР" DN 1000	28363-04	СПТ961	17029-98
2.7	ИК массы (подающий трубопровод)	ИК №№ 2.1	, 2.3, 2.5	СПТ961	17029-98
2.8	ИК массы (обратный трубопровод)	ИК №№ 2.2	, 2.4, 2.6	СПТ961	17029-98
2.9	ИК разности температур	КТСП	38790-08	СПТ961	17029-98
2.10	ИК тепловой энергии	-		СПТ961	17029-98
	3. Узел учета отпускаемого па	ра «Производство	«Каустик»	AO «БСК» ни	тка 1,2»
3.1		Метран-150TG3	32854-13	СПТ961.2	35477-12
3.2	ИК давления (нитка 2)	Метран-150TG3	32854-13	СПТ961.2	35477-12
3.3	ИК температуры (нитка 1)	TC-1088	18131-09	СПТ961.2	35477-12
3.4	ИК температуры (нитка 2)	TC-1088	18131-09	СПТ961.2	35477-12
3.5	ИК массового расхода (массы)	Метран-150 CD2	32854-13	СПТ961.2	35477-12
3.6	ИК массового расхода (массы) (нитка 2)	Метран-150 CD2	32854-13	СПТ961.2	35477-12
3.7	ИК тепловой энергии	-		СПТ961.2	35477-12

Пломбирование системы не предусмотрено. Для исключения возможности непреднамеренных и преднамеренных изменений измерительной информации, средства измерений, входящие в состав системы, пломбируются в соответствии с требованиями, изложенными в их описаниях типа.

Нанесение знака поверки и заводского номера на систему не предусмотрено. Знак поверки наносится на свидетельство о поверке в виде оттиска клейма поверителя.

Заводской номер системы №01 указан в руководстве по эксплуатации системы.

Программное обеспечение

Программное обеспечение системы представлено программным обеспечением измерительных компонент, которые являются средствами измерений утвержденного типа и автономным ПО ИВК, выполняющимся на сервере и автоматизированных рабочих местах. Автономное ПО предназначено для автоматического сбора, обработки и хранения данных, отображения полученной информации в удобном для анализа и отчетности виде.

ПО обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа.

Идентификационные данные метрологически значимой части ПО представлены в таблицах 3, 4.

Таблица 3 – Идентификационные данные ПО SCADA/HMI DataRate

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	SCADA/HMI DataRate	
Номер версии (идентификационный номер) ПО	не ниже 2.5.1750.90	
Цифровой идентификатор ПО	8f3217897a2470c283cce8cfe6d6a735 (Krug.SCADA.Runtime)	
Алгоритм вычисления цифрового идентификатора ПО	MD5	

Таблица 4 – Идентификационные данные ПО АСТЭП

Идентификационное наименование ПО	ASTEP
Номер версии (идентификационный номер) ПО	не ниже 2.4.89.1382
Цифровой идентификатор ПО	859a388916194d402c8aedcbaeb0bef4 (astep.exe)
Алгоритм вычисления цифрового идентификатора ПО	MD5

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Влияние программного обеспечения учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

Таблица 5 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений тепловой энергии, Гкал	от 1,0 до 9·10 ⁷
Диапазон измерений объема теплоносителя, м ³	от 200 до $9 \cdot 10^8$
Диапазон измерений массы теплоносителя, т	от 35,96 до 9⋅108
Диапазон измерений объемного расхода для ИК №1.5, № 1.6,	от 200 до 30000
M^3/q	
Диапазон измерений объемного расхода для ИК №2.5, № 2.6,	от 300 до 5000
M^3/H	
Диапазон измерений массового расхода (массы) для ИК №3.5,	от 35,96 до 270,75
№ 3.6, т/ч	
Диапазон измерений разности температур для ИК № 1.9, № 2.9,	от +5 до +145
°C	
Диапазон измерений температуры для ИК №1.3, №1.4, №2.3,	от 0 до +150
№2.4, °C	
Диапазон измерений температуры для ИК №3.3, №3.4, °C	от 270 до 300
Диапазон измерений избыточного давления для ИК №1.1, МПа	от 0 до 1,6

Наименование характеристики	Значение
Диапазон измерений избыточного давления для ИК №1.2, МПа	от 0 до 0,6
Диапазон измерений избыточного давления для ИК №2.1,№2.2, №3.1, № 3.2, МПа	от 0 до 2,5
Пределы допускаемой относительной погрешности при измерении объемного расхода (объема) и массы для ИК №№1.5 -1.8 , №№ $2.5-2.8$, %	±2,1
Пределы допускаемой относительной погрешности измерений тепловой энергии для ИК №1.10, ИК № 2.10, %	$\pm(3+4\Delta t_{\scriptscriptstyle H}/\Delta t+0,02\cdot G_{max}/G)$
Пределы допускаемой относительной погрешности измерений массового расхода (массы) для ИК №3.5, № 3.6, %	±3
Пределы допускаемой относительной погрешности измерений тепловой энергии для ИК №3.7, %	±3,1
Пределы допускаемой абсолютной погрешности измерений	
температуры, °С	$\pm (0,25+0,002\cdot t)$
Пределы допускаемой относительной погрешности измерений разности температур, %	$\pm (0,5{+}3\Delta t_{\scriptscriptstyle H}/\Delta t)$
Пределы допускаемой приведенной погрешности измерений избыточного давления (от диапазона измерений), %	±1,0
Пределы допускаемой относительной погрешности измерений интервалов времени, %	±0,01

Примечание:

 G_{max} и G — соответственно верхний предел измерений и значение измеряемого расхода в подающем трубопроводе, м³/ч;

t – измеренное значение температуры, °C;

 $\Delta t_{\scriptscriptstyle H}$ и Δt — наименьшее значение разности температур и измеренное значение разности температур в подающем и обратном трубопроводе, °C.

Таблица 6 – Основные технические характеристики

Tabling Condition Textile Repair Profit	
Наименование характеристики	Значение
Теплоноситель	
– на узлах учета №№ 1,2	вода
– на узле учета №3	перегретый пар
Температура окружающего воздуха, °С	
 в месте размещения термометров сопротивления из состава узлов 	
учета №1 и №3, первичных преобразователей расходомеров «ВЗЛЕТ МР» из состава узла учета №2	от -40 до +35
 – в месте размещения преобразователей давления из состава узлов учета №1 - №3, расходомера жидкости ультразвукового 	от +5 до +40
двухканального УРЖ2КМ из состава узла учета №1, вторичных	
преобразователей расходомеров «ВЗЛЕТ МР» и термометров	
сопротивления из состава узла учета №2	
 в месте размещения тепловычислителей, ИВК и APM операторов 	от +10 до +35
Относительная влажность воздуха при температуре +35 °C, %, не более	80
Атмосферное давление, кПа	от 84 до 106,7

Наименование характеристики	Значение
Параметры электрического питания:	
 напряжение переменного тока, В 	от 187 до 242
– частота переменного тока, Гц	от 49 до 51

Знак утверждения типа

наносится в левый верхний угол титульного листа руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплектность средства измерений представлена в таблице 7.

Таблица 7 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система автоматизированная коммерческого учета тепловой энергии Ново-Стерлитамакской ТЭЦ — производственной площадки Стерлитамакской ТЭЦ ООО «БГК»	-	1 шт.
Руководство по эксплуатации	-	1 экз.
Комплект эксплуатационных документов на комплектующие изделия, входящие в состав системы	-	1 экз.

Сведения о методиках (методах) измерений

приведены в:

руководстве по эксплуатации раздел 1.1.5 «Устройство и работа Системы. Методы измерений»;

в документе 1207-RA.RU.311735-2022 «ГСИ. Тепловая энергия и масса теплоносителя. Методика измерений на узле коммерческого учета отпускаемого пара «Производство «Каустик» АО «БСК» нитка 1,2» производственной площадки Ново-Стерлитамакской ТЭЦ Стерлитамакской ТЭЦ филиала ООО «БГК», аттестованной Западно-Сибирским филиалом ФГУП «ВНИИФТРИ», уникальный номер записи об аккредитации в реестре аккредитованных лиц: RA.RU.311735. Свидетельство об аттестации № 1207-RA.RU.311735-2022.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения»;

ГОСТ 8.586.1-2005 «ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования»;

ГОСТ 8.586.2-2005 «ГСИ Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 2. Диафрагмы. Технические требования»;

ГОСТ 8.586.5-2005 «ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений»;

Правила коммерческого учета тепловой энергии, теплоносителя, утвержденные постановлением Правительства Российской Федерации от 18 ноября 2013 г. № 1034;

Постановление Правительства Российской Федерации от 16 ноября 2020 г. №1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений».

Правообладатель

Общество с ограниченной ответственностью «Башкирская генерирующая компания» (ООО «БГК»)

ИНН 0277077282

Адрес: 450059, Республика Башкортостан, г. Уфа, ул. Р. Зорге, д. 3

Телефон: +7 (347) 222-86-25 E-mail: office@bgkrb.ru

Изготовитель

Общество с ограниченной ответственностью «Башкирская генерирующая компания» (ООО «БГК»)

ЙНН 0277077282

Адрес: 450059, Республика Башкортостан, г. Уфа, ул. Р. Зорге, д. 3

Телефон: +7 (347) 222-86-25 E-mail: office@bgkrb.ru

Испытательный центр

Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ») ИНН 5044000102

Адрес: 630004, г. Новосибирск, пр. Димитрова, д. 4

Юридический адрес: 141570, Московская обл., г. Солнечногорск, р.п. Менделеево,

промзона ФГУП ВНИИФТРИ, корпус 11

Телефон: +7 (383) 210-08-14 Факс: +7 (383) 210-13-60 E-mail: director@sniim.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.310556.

