УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «19» декабря 2022 г. № 3206

Лист № 1 Всего листов 7

Регистрационный № 87686-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы измерительные для стендовых испытаний агрегатов вертолета СИСТ-70

Назначение средства измерений

Системы измерительные для стендовых испытаний агрегатов вертолета СИСТ-70 (далее - системы) предназначены для измерений крутящего момента силы, частоты вращения, силы, избыточного давления, расхода рабочей жидкости, виброускорения, температуры и формирования на основе полученных данных сигналов управления сложными технологическими процессами и объектами, а также для регистрации и отображения результатов измерений и расчетных величин.

Описание средства измерений

Функционально системы состоят из измерительных каналов (ИК):

- ИК крутящего момента силы;
- ИК частоты вращения;
- ИК силы:
- ИК избыточного давления;
- ИК виброускорения;
- ИК расхода рабочей жидкости;
- ИК температуры.

ИК систем состоят из:

- а) первичных измерительных преобразователей (ПИП):
- датчик крутящего момента силы T10F, регистрационный номер средства измерений в Федеральном информационном фонде (рег. №) 50769-12;
 - датчик силы S9, per. № 17989-09, либо датчик силы ДСТ 50, per. № 67554-17
 - датчик тахометрический МЭД-1, рег. № 64257-16;
 - преобразователь давления измерительный DMP, per. № 56795-14;
 - вибропреобразователь АР2037-100, рег. № 70872-18;
 - преобразователь расхода турбинный ТПР, рег. № 8326-04;
 - термоэлектрический преобразователь ДТП, рег. № 28476-16;
 - термометр сопротивления ДТС, рег. № 28354-10;
 - термометры сопротивления ТС, рег. № 41202-09;

б) вторичной электрической части ИК (ВИК), которая представляет собой многоканальный измерительный усилитель MGCplus (далее — усилитель MGCplus), размещенный в стойке управления, шкаф коммутационный и многоканальные приборы «Термодат» рег. № 17602-15, размещенные в шкафу измерительном температуры.

Допускается применение аналогичных ПИП утвержденного типа, имеющих аналогичные технические характеристики, диапазон измерений, метрологические характеристики в рабочих диапазонах системы.

Принцип действия ИК крутящего момента силы основан на преобразовании частотного сигнала от датчика в цифровой код с последующим вычислением ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК частоты вращения основан на преобразовании импульсного сигнала от датчика тахометрического в цифровой код с последующим вычислением ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК силы основан на преобразовании аналогового сигнала от датчика силы в цифровой код с последующим вычислением ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК избыточного давления основан на преобразовании аналогового сигнала от датчика давления в цифровой код с последующим вычислением ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК виброускорения основан на преобразовании аналогового сигнала от вибропреобразователя в цифровой код с последующим вычислением ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК расхода основан на преобразовании импульсного сигнала от датчика расхода в цифровой код с последующим вычислением ПЭВМ значений расхода рабочей жидкости по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК температуры основан на преобразовании аналогового сигнала от термометра сопротивления в цифровой код с последующим вычислением ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Общий вид стойки управления систем, места нанесения знака утверждения типа и знака поверки представлены на рисунке 1 и 2.

Заводские номера систем 01 и 02.

Заводской номер системы в форме числового кода приведен в формуляре на систему и наносится на каждую стойку управлений в виде наклейки в соответствии с рисунком 2. Нанесение знака поверки на корпус не предусмотрено.

Общий вид других компонентов систем представлен на рисунках 3-6.

Защита от несанкционированного доступа предусмотрена в виде специального замка на дверце стойки управления, запираемого ключом в соответствии с рисунком 6.

Рисунок 3 – Шкаф коммутационный

Рисунок 4 — Шкаф измерительный температуры

Рисунок 5 — Рабочее место оператора

Рисунок 6 – Внешний вид замка на дверце стойки управления

Пломбирование систем не предусмотрено.

Программное обеспечение

Работа системы осуществляется под управлением специализированного программного обеспечения (СПО) Гарис в среде операционной системы «MSWindows», обеспечивающего циклический сбор измерительной информации от ИК системы; расшифровку полученной информации и приведение ее к виду, удобному для дальнейшего использования; визуализацию результатов измерений в цифровом и графическом представлении; обеспечение режимов градуировки и тестирования (поверки) ИК системы. Алгоритм вычисления цифрового идентификатора - MD5.

Уровень защиты СПО «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные метрологически значимой части СПО Гарис представлены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	GarisGrad.dll	GarisAspf.dll	GarisInterpreter.dll
Номер версии	не ниже	не ниже	не ниже
(идентификационный	0.0.0.147	0.0.0.147	0.0.0.148
номер) ПО			
Цифровой	1f4635a21a99f127	194871dff7167e72203291337	1b81ee91d1a68a1b6f
идентификатор ПО	3dff5e796bee6ff9	7f6a8a0	6f04c06b434198
Другие	Библиотека	Библиотека вычисления	Библиотека формул
идентификационные	фильтрации,	амплитуды, статики, фазы,	вычисляемых
данные, если имеются	градуировочных	частоты и других	каналов
	расчетов	интегральных параметров	
		сигнала	

СПО Гарис обеспечивает измерения всех ИК в едином времени, синхронизируя его со временем операционной системы «MSWindows» при каждом включении, которая в свою очередь синхронизирует время с доменом, информацию о точном времени который распространяет в сети TCP/IP, согласно протоколу NTP (Network Time Protocol).

Метрологические и технические характеристики

Метрологические характеристики ИК систем приведены в таблице 2.

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение	
1	2	
ИК крутящего момента силы		
Номинальное значение диапазона измерений ¹⁾ (ДИ), кН·м	от $\pm 0,05$ до ± 10	
Номинальное значение диапазона показаний (ДП), кгс·м	от ±5,097 до ±1019	
Пределы допускаемой погрешности ИК ²⁾		
- приведенная к ВП в поддиапазоне от 0 до 0,5 ДИ, %	±0,5	
- относительная в поддиапазоне свыше 0,5 ДИ до 1,0 ДИ, %	±0,5	
ИК частоты вращения		
Нижняя граница ДИ, об/мин	100	
Верхняя граница ³⁾ ДИ, об/мин	От 1000 до 60000	
Пределы допускаемой приведенной к ВП погрешности ИК, %	±0,5	

Продолжение таблицы 2

продолжение таолицы 2	
1	2
ИК силы	
Номинальное значение ¹⁾ ДИ, кН	от 0,2 до 50
Номинальное значение ДП, кгс	от 20,39 до 5097
Пределы допускаемой приведенной к ВП погрешности ИК ²⁾ ,	±0,5
%	
ИК расхода рабочей жидкости	
Нижняя граница ¹⁾ ДИ, л/мин	от 0,18 до 300
Верхняя граница ¹⁾ ДИ, л/мин	от 0,6 до 3600
Пределы допускаемой относительной погрешности ИК, %	±3,0
ИК виброускорения	
Диапазон измерений, м/c ²	от 9,81 до 490,5
Диапазон показаний, g	от 1 до 50
Пределы допускаемой относительной погрешности ИК, %	±20
ИК избыточного давления	
Номинальное значение ¹⁾ ДИ, МПа	от 0,004 до 60
Номинальное значение ДП, бар	от 0,04 до 600
Пределы допускаемой приведенной к ВП погрешности ИК ²⁾ ,	±1,0
%	
ИК температуры масла	
Диапазон измерений, °С	от 0 до 120
Пределы допускаемой абсолютной погрешности ИК, °С	±1,0
ИК температуры твердой поверхности	
Диапазон измерений, °С	от 0 до 150
Пределы допускаемой абсолютной погрешности ИК, °С	±10,0
Печиточного	

Примечание:

ВП – верхний предел диапазона измерений;

ДИ – диапазон измерений;

ДП – диапазон показаний;

- 1) Диапазон измерений ИК соответствует диапазону измерения применяемого ПИП;
- 2) Погрешность ИК нормируется к верхнему пределу диапазона измерений применяемого ПИП;
- 3) Верхняя граница диапазона измерений ИК частоты вращения определяется параметрами индукторного колеса.

Сведения о МХ ИК, применяемых ПИП и параметрах индукторного колеса приведены в формуляре измерительной системы.

Технические характеристики систем приведены в таблице 3.

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от 10 до 30
- относительная влажность воздуха при температуре 25°C, %	от 30 до 80
- атмосферное давление, кПа	от 97,3 до 104,6
Параметры электрического питания:	
- напряжение переменного тока, В	220 ± 22
- частота переменного тока, Гц	$50 \pm 0,4$

Знак утверждения типа

наносится на стойку управления в виде наклейки.

Комплектность средства измерений

Таблица 4 - Комплект поставки средства измерений

Таблица 4 - Комплект поставки средства измерений		
Наименование	Обозначение	Количество
1	2	3
Стойка управления (УР)	CT110.50.00.000	1 шт.
Многоканальный измерительный усилитель	MGCplus	1 шт.
Стойка управления	CT091.00.00.000	1 шт.
Многоканальный измерительный усилитель	MGCplus	1 шт.
Рабочее место оператора	-	2 шт.
Количество ИК крутящего момента силы	-	от 0 до 1
Количество ИК частоты вращения	-	от 0 до 1
Количество ИК силы	-	от 0 до 2
Количество ИК расхода рабочей жидкости	-	от 0 до 1
Количество ИК виброускорения	-	от 0 до 6
Количество ИК избыточного давления	-	от 0 до 2
Количество ИК температуры масла	-	от 0 до 8
Количество ИК температуры твердой поверхности	-	от 0 до 12
Датчик крутящего момента силы	T10F	1 шт.
Датчик тахометрический	МЭД-1	1 шт.
Датчик силы	Ѕ9 (ДСТ 50)	2 шт.
Датчик давления	DMP	2 шт.
Датчик расхода	ТПР	1 шт.
Вибропреобразователь	AP2037-100	6 шт.
Термометр сопротивления	ДТС	8 шт.
Термопреобразователь	ДТП (ТС742)	12 шт.
Шкаф коммутационный	CT110.40.00.000	1 шт.
Шкаф измерительный температуры	CT090.50.00.000	1 шт.
Многоканальный регулятор температуры	Термодат	1 шт.
Шкаф измерительный температуры	CT110.80.00.000	1 шт.
Многоканальный регулятор температуры	Термодат	1 шт.
Комплект кабелей	-	1 к-т.
Программное обеспечение	Гарис	1 шт.
Формуляр	СТ110.20.00.000 ФО	1 экз.
Руководство по эксплуатации	СТ110.20.00.000 РЭ	1 экз.
Генератор тест-сигнала	CT720.00.20.000	1 шт.
·		

Сведения о методиках (методах) измерений

приведены в разделе «З УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ» документа СТ110.20.00.000 РЭ.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды;

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

Правообладатель

Общество с ограниченной ответственностью «ПКЦ СИСТЕМЫ ТРИАЛ» (ООО «ПКЦ СИСТЕМЫ ТРИАЛ»)

ИНН 5027297090

Юридический адрес и адрес места осуществления деятельности: 140004, Московская обл., г. Люберцы, пр-кт Октябрьский, д. 411 литер Т, помещение 4-6, этаж 1

E-mail: trialsystems@yandex.ru

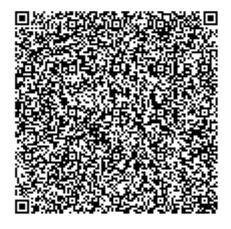
Изготовитель

Общество с ограниченной ответственностью «ПКЦ СИСТЕМЫ ТРИАЛ» (ООО «ПКЦ СИСТЕМЫ ТРИАЛ»)

ИНН 5027297090

Юридический адрес и адрес места осуществления деятельности: 140004, Московская обл., г. Люберцы, пр-кт Октябрьский, д. 411 литер Т, помещение 4-6, этаж 1

E-mail: trialsystems@yandex.ru


Испытательный центр

Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

