УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «01» марта 2023 г. № 450

Лист № 1 Всего листов 6

Регистрационный № 88357-23

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установка для измерения параметров полупроводниковых материалов на эффекте Холла HMS-3000

Назначение средства измерений

Установка для измерения параметров полупроводниковых материалов на эффекте Холла HMS-3000 (далее по тексту – установка) предназначена для измерений напряжения постоянного тока, воспроизведения силы постоянного тока и магнитной индукции постоянного поля при определении характеристик полупроводниковых структур.

Описание средства измерений

Принцип действия установки основан на измерении напряжения постоянного тока в направлениях: параллельном и перпендикулярном пропускаемому току, между контактами пластины из полупроводникового материала по горизонтали, вертикали и диагонали, без воздействия и при воздействии на образец магнитного поля.

На основании полученных значений напряжения постоянного тока, измеренного при пропускании тока в разных направлениях, без воздействия и при воздействии магнитного поля на образец, вычисляется значение удельного сопротивления, проводимости, концентрации и подвижности основных носителей заряда, магнитного сопротивления, коэффициента Холла в соответствии с методикой измерений по ГОСТ 25948 «Арсенид галлия и фосфид галлия монокристаллические в микроэлектронной промышленности. Измерение удельного электрического сопротивления и коэффициента Холла». Результаты измерений и расчетов выводятся на монитор персонального компьютера.

Конструктивно установка состоит из основного блока, меры магнитной индукции, компьютера с установленным программным обеспечением.

Основной блок установки смонтирован в металлическом корпусе. На его лицевой панели расположены индикатор наличия питания, индикатор выполнения измерения и кнопка сброса. На задней панели расположены переключатель для выбора порта USB или RS232, разъем порта RS232, разъем порта USB, разъем для подсоединения измерительного модуля, кнопка включения и выключения питания, предохранитель, разъем для кабеля питания, клемма заземления.

Мера магнитной индукции представляет собой алюминиевый прямоугольный корпус. В центре данного корпуса закреплена алюминиевая емкость с пенопластовой вставкой для измерений в жидком азоте. В верхней части крышки смонтирован разъем для соединения с основным блоком установки и технологическое отверстие для заливки жидкого азота в алюминиевую емкость через воронку, в нижней расположен разъем для установки платы с измеряемым образцом.

Магнитное поле в мере создается с помощью двух П-образных магнитов, имеющих одинаковое значение магнитной индукции и противоположную полярность.

Установка позволяет определять параметры полупроводниковых материалов при задании разных значений постоянного тока, изменять количество измерений от 1 до 1000 раз и автоматически усреднять результат измерения, проводить измерения при комнатной температуре и температуре жидкого азота.

Нанесение знака поверки на составные части установки не предусмотрено. Знак поверки наносится в свидетельство о поверке в виде наклейки или поверительного клейма.

Заводской номер № Н3012112020 нанесен на маркировочную наклейку методом шелкографии в виде буквенно-цифрового кода.

Внешний вид установки с указанием мест пломбировки, нанесения знака утверждения типа и заводского номера показан на рисунках 1, 2.

Рисунок 2 — Общий вид задней панели основного блока установки с указанием мест пломбировки и нанесения заводского номера

Программное обеспечение

Для работы с установкой используется метрологически значимое ПО «HMS-3000», устанавливаемое на персональный компьютер (ноутбук). ПО обеспечивает управление, передачу, обработку измеренных данных, а также отображение результатов измерений.

Уровень защиты ПО - «средний» в соответствии с Р 50.2.077-2014.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного	
обеспечения	HMS-3000
Номер версии (идентификационный номер)	
программного обеспечения	3.53
Цифровой идентификатор встроенного программного обеспечения	-

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Tuesting 2 Triesposies in teckine August epiterinkii			
Наименование характеристики	Значение		
Диапазон воспроизведения силы постоянного тока, мкА	От 1 до 18000		
Пределы допускаемой относительной погрешности			
воспроизведения силы постоянного тока, %	±2		
Диапазон измерения напряжения постоянного тока, мВ	От 0,1 до 2000		
Пределы допускаемой абсолютной погрешности измерения			
напряжения постоянного тока, мВ	$\pm (0.02U*+0.01)$		
Значение магнитной индукции в рабочей области меры, Тл	0,567		
Пределы допускаемой абсолютной погрешности			
воспроизведения магнитной индукции, Тл	$\pm 0,03$		
Однородность магнитной индукции в рабочей области меры			
(20 х 20 мм), %, не более	±3		
*где U – измеренное значение напряжения постоянного тока, мкВ			

Таблица 3 – Основные технические характеристики

Tuosinga 5 Octiobribie Textini teekite kapaktepitetiikii		
Наименование характеристики	Значение характеристики	
Размеры исследуемых образцов, мм:		
– длина	от 5 до 20	
– ширина	от 5 до 20	
Толщина исследуемых образцов, мм, не более	5,5	
Параметры электрического питания:		
 напряжение переменного тока, В 	220 ±20	
– частота переменного тока, Гц	50 ± 0.5	
Потребляемая мощность, В А, не более	200	

Продолжение таблицы 3- Основные технические характеристики

Наименование характеристики	Значение характеристики
Габаритные размеры основного блока, мм, не более:	
– длина	360
— ширина	300
— высота	105
Масса основного блока, кг, не более	8
Рабочие условия применения:	
– температура окружающего воздуха, °C	от +15 до +25
– относительная влажность окружающего воздуха,	% от 30 до 80
– атмосферное давление, кПа	от 84 до 106,7

Знак утверждения типа

наносится на корпус основного блока в виде наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 — Комплектность установки для измерения параметров полупроводниковых материалов на эффекте Холла HMS-3000

Наименование	Обозначение	Количество
1 Установка для измерения параметров		
полупроводниковых материалов на эффекте		
Холла HMS-3000 в составе:		
1.1 Основной блок	HMS-3000	1 шт.
1.2 Мера магнитной индукции	MP-51R	1 шт.
1.3 Контрольный образец с паспортом	ITO	1 шт.
1.4 Плата для установки образцов	SMB-20R	1 шт.
1.5 Монтажная плата для образцов с		
пружинным зажимом	SPCB-01	1 шт.
1.6 Кабель для подключения образцов	1	1 шт.
1.7 Контактный провод	-	1 комп.
1.8 Кабель USB	-	1 шт.
1.9 Кабель RS 232	-	1 шт.
1.10 Сетевой кабель	-	1 шт.
1.11 Припой индия и олова (InSn 5g)	-	1 шт.
1.12 CD диск с программным обеспечением	HMS-3000 v.3.53	1 шт.
1.13 Компьютер (ноутбук)		1 шт.
1.14 Руководство по эксплуатации	НМS-3000 РЭ	1 шт.
1.15 Формуляр	НМS-3000 ФО	1 шт.

Сведения о методиках (методах) измерений

приведены в разделе 2 «Использование по назначению» документа HMS-3000 РЭ «Установка для измерения параметров полупроводниковых материалов на эффекте Холла HMS-3000. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к установке для измерения параметров полупроводниковых материалов на эффекте Холла HMS-3000

ГОСТ 8.030-2013 «ГСИ. Государственная поверочная схема для средств измерений магнитной индукции, магнитного потока, магнитного момента и градиента магнитной индукции»;

Приказ Росстандарта от 1 октября 2018 г. № 2091 «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического тока в диапазоне от $1 \cdot 10^{-16}$ до 100 А»;

Приказ Росстандарта от 30 декабря 2019 г. № 3457 «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы»;

ГОСТ 25948-83 «Арсенид галлия и фосфид галлия монокристаллические в микроэлектронной промышленности. Измерение удельного электрического сопротивления и коэффициента Холла».

Правообладатель

Корпорация Есоріа, Корея

Адрес: 7th Floor Gyeongdo Bld, 986-18 Hogye-dong, Dongan-gu, Anyang-city,

Gyeonggi-do, South Korea. 431-841

Телефон: +82-31-427-8963 Web-сайт: www.ecopia21.co.kr

Изготовитель

Корпорация Есоріа, Корея

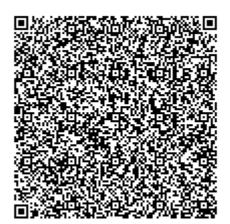
Адрес: 7th Floor Gyeongdo Bld, 986-18 Hogye-dong, Dongan-gu, Anyang-city,

Gyeonggi-do, South Korea. 431-841

Телефон: +82-31-427-8963 Web-сайт: www.ecopia21.co.kr

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Φ ГУП «ВНИИ Φ ТРИ»)


Адрес: 141570, Московская обл., Солнечногорский р-н, р.п. Менделеево, промзона

ВНИИФТРИ

Телефон (факс): (495) 526-63-00

Web-сайт: www.vniiftri.ru E-mail: office@vniiftri.ru

Уникальный номер записи в реестре аккредитованных лиц № 30002-13.

