УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «12» апреля 2023 г. № 811

Лист № 1 Всего листов 10

Регистрационный № 88776-23

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Совгаванская ТЭЦ

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Совгаванская ТЭЦ (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электроэнергии, средне интервальной мощности;
- периодический (1 раз в полчаса, час, сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени состояния средств измерений и результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин.);
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и хранящихся в АИИС КУЭ данных от несанкционированного доступа на физическом и программном уровнях (установка пломб, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- автоматическое ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее по тексту — ИИК), которые включают в себя измерительные трансформаторы тока (далее по тексту — ТТ), измерительные трансформаторы напряжения (далее по тексту — ТН) и счетчики активной и реактивной электроэнергии (далее по тексту — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень — информационно-вычислительный комплекс электроустановки (далее по тексту — ИВКЭ), включает в себя контроллер многофункциональный ARIS MT200 (далее по тексту — УСПД), устройство синхронизации времени (далее по тексту — УСВ), входящее в состав УСПД, каналообразующую аппаратуру.

3-й уровень — информационно-вычислительный комплекс (далее по тексту — ИВК) АО «ДГК», включает в себя технические средства приема-передачи данных (каналообразующую аппаратуру), коммуникационное оборудование, сервер баз данных (далее по тексту — БД) АИИС КУЭ, автоматизированные рабочие места персонала (далее по тексту — АРМ), программное обеспечение (далее по тексту — ПО) «ТЕЛЕСКОП+».

Измерительные каналы (далее по тексту – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы (сервер БД), а также отображение информации по подключенным к УСПД устройствам.

На верхнем — третьем уровне системы выполняется формирование и хранение поступающей информации, оформление справочных и отчетных документов. Сервер БД (или APM) ежесуточно формирует и отправляет с использованием электронной подписи (далее — ЭП) с помощью электронной почты по каналу связи по сети Internet по протоколу TCP/IP отчеты с результатами измерений в формате XML в АО «АТС», филиал АО «СО ЕЭС» РДУ и всем заинтересованным субъектам ОРЭМ.

АИИС КУЭ оснащена системой обеспечения единого времени (далее по тексту - COEB), которая охватывает все уровни АИИС КУЭ - ИИК, ИВКЭ и ИВК.

СОЕВ включает в себя УСВ (входящее в состав УСПД) на основе приемника сигналов точного времени от спутников глобальной системы позиционирования ГЛОНАСС/GPS, встроенные часы сервера АИИС КУЭ, УСПД и счетчиков. УСВ обеспечивает автоматическую коррекцию часов УСПД. Коррекция часов УСПД проводится при расхождении часов УСПД и времени УСВ более чем на ± 1 мс. Коррекция часов счетчиков осуществляется от часов УСПД. Коррекция времени счетчиков происходит при расхождении часов УСПД и часов счечтиков более чем на ± 2 с. Коррекция часов сервера БД осуществляется от часов УСПД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени УСПД более чем на ± 1 с.

АИИС КУЭ также обеспечивает прием измерительной информации от АИИС КУЭ утвержденного типа третьих лиц, получаемой в формате XML-макетов в соответствии с регламентами ОРЭМ в автоматизированном режиме посредством электронной почты сети Internet.

Журналы событий счетчика отражают: время (дату, часы, минуты, секунды) коррекции часов (время до коррекции и время после коррекции).

Журналы событий сервера БД и УСПД отражают: время (дату, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки на средство измерений не предусмотрено.

Заводской номер (№ 1119.02) указывается типографским способом в паспортеформуляре АИИС КУЭ, а также на специальном информационном шильдике на передней дверце шкафа с сервером БД в составе уровня ИВК.

Программное обеспечение

В АИИС КУЭ используется ПО «ТЕЛЕСКОП+», в состав которого входят модули, указанные в таблице 1. ПО «ТЕЛЕСКОП+» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ΠO «ТЕЛЕСКОП+».

Таблица 1 – Идентификационные данные ПО

тистици т тидентиримидистивне динивне тто	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ТЕЛЕСКОП+
Номер версии (идентификационный номер) ПО	не ниже 1.0.1.1
Цифровой идентификатор ПО: - сервер сбора данных SERVER_MZ4.dll - APM Энергетика ASCUE_MZ4.dll	f851b28a924da7cde6a57eb2ba15af0c cda718bc6d123b63a8822ab86c2751ca
Алгоритм вычисления цифрового идентификатора ПО	MD5

ПО «ТЕЛЕСКОП+» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Конструкция средства измерения исключает возможность несанкционированного влияния на программное обеспечение и измерительную информацию.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

~		Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК	Наименование ИК	TT	ТН	Счетчик	УСПД	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	Совгаванская ТЭЦ, ОРУ 110 кВ, яч.4, ВЛ 110 кВ Совгаванская ТЭЦ - Окоча I цепь	ТОГФ-110 Кл.т. 0,2S Ктт 200/5 Рег. № 44640-10	ЗНОГ Кл.т. 0,2 Ктн 110000:√3/100:√3 Рег. № 61431-15	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17		активная реактивная	± 0,6 ± 1,3	± 1,7 ± 3,9
2	Совгаванская ТЭЦ, ОРУ 110 кВ, яч.6, ВЛ 110 кВ Совгаванская ТЭЦ - Ванино I цепь	ТОГФ-110 Кл.т. 0,2S Ктт 600/5 Рег. № 44640-10	ЗНОГ Кл.т. 0,2 Ктн 110000:√3/100:√3 Рег. № 61431-15	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	ARIS MT200 Per. № 72363-18	активная реактивная	± 0,6 ± 1,3	± 1,7 ± 3,9
3	Совгаванская ТЭЦ, ОРУ 110 кВ, яч.10, ВЛ 110 кВ Совгаванская ТЭЦ - Эгге	ТОГФ-110 Кл.т. 0,2S Ктт 300/5 Рег. № 44640-10	ЗНОГ Кл.т. 0,2 Ктн 110000:√3/100:√3 Рег. № 61431-15	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17		активная	± 0,6 ± 1,3	± 1,7 ± 3,9

Продолжение таблицы 2

1	жение таолицы <i>2</i>	3	Δ	5	6	7	8	9
4	Совгаванская ТЭЦ, ОРУ 110 кВ, яч.2, ВЛ 110 кВ Совгаванская ТЭЦ - Окоча II цепь	ТОГФ-110 Кл.т. 0,2S Ктт 200/5 Рег. № 44640-10	ЗНОГ Кл.т. 0,2 Ктн 110000:√3/100:√3 Рег. № 61431-15	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	6	активная реактивная	± 0,6 ± 1,3	± 1,7 ± 3,9
5	Совгаванская ТЭЦ, ОРУ 110 кВ, яч.8, ВЛ 110 кВ Совгаванская ТЭЦ - Ванино II цепь	ТОГФ-110 Кл.т. 0,2S Ктт 600/5 Рег. № 44640-10 ТОГФ (П) Кл.т. 0,2S Ктт 600/5 Рег. № 61432-15	ЗНОГ Кл.т. 0,2 Ктн 110000:√3/100:√3 Рег. № 61431-15	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Per. № 36697-17		активная реактивная	± 0,6 ± 1,3	± 1,7 ± 3,9
6	Совгаванская ТЭЦ, ОРУ 110 кВ, яч.7, ОВ-110 кВ	ТОГФ-110 Кл.т. 0,2S Ктт 600/5 Рег. № 44640-11 ТОГФ (П) Кл.т. 0,2S Ктт 600/5 Рег. № 61432-15 ТОГФ-110 Кл.т. 0,2S Ктт 600/5 Рег. № 44640-11	3HOГ Кл.т. 0,2 Ктн 110000:√3/100:√3 Рег. № 61431-15	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	ARIS MT200 Per. № 72363-18	активная реактивная	± 0,6 ± 1,3	± 1,7 ± 3,9
7	Совгаванская ТЭЦ, ТГ №1 10,5 кВ	ТВ-ЭК Кл.т. 0,2S Ктт 5000/5 Рег. № 56255-14	ЗНОЛП-ЭК Кл.т. 0,5 Ктн 10500:√3/100:√3 Рег. № 68841-17	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17		активная реактивная	± 0,8 ± 1,8	± 1,8 ± 4,0

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
8	Совгаванская ТЭЦ, ТГ №2 10,5 кВ	ТВ-ЭК Кл.т. 0,2S Ктт 5000/5 Рег. № 56255-14	ЗНОЛП-ЭК Кл.т. 0,5 Ктн 10500:√3/100:√3 Рег. № 68841-17	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	ARIS MT200 Per. № 72363-18	активная реактивная	± 0,8 ± 1,8	± 1,8 ± 4,0
Пределы допускаемой погрешности СОЕВ, с						土	5	

Примечания:

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана $\cos \varphi = 0.8$ инд $I = 0.02 \cdot I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков от минус 40 до плюс 60 °C.
- 4 Кл. т. класс точности, Ктт коэффициент трансформации трансформаторов тока, Ктн коэффициент трансформации трансформаторов напряжения, Рег. № регистрационный номер в Федеральном информационном фонде.
- 5 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных метрологических характеристик.
 - 6 Допускается замена УСПД на аналогичное утвержденного типа.
 - 7 Допускается замена сервера АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
 - 8 Допускается изменение наименований ИК, без изменения объекта измерений.
- 9 Замена оформляется техническим актом в установленном на предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК АИИС КУЭ приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК АИИС КУЭ

Габлица 3 – Основные технические характеристики ИК АИИС КУЭ	1 2
Наименование характеристики	Значение
Количество измерительных каналов	8
Нормальные условия:	
параметры сети:	
- напряжение, $\%$ от $U_{\scriptscriptstyle {\scriptsize HOM}}$	от 99 до 101
- tok, $\%$ ot I_{hom}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
 коэффициент мощности соѕф 	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, $\%$ от $U_{\scriptscriptstyle \text{HOM}}$	от 90 до 110
- Tok, $\%$ ot I_{hom}	от 2 до 120
- коэффициент мощности	от $0,5$ _{инд} до $0,8$ _{емк}
- частота, Гц	от 49,5 до 50,5
- температура окружающей среды для ТТ и ТН, °С	от -60 до +40
- температура окружающей среды в месте расположения	
счетчиков, °С	от -40 до +60
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +30
- температура окружающей среды в месте расположения	
УСПД, °С	от -10 до +40
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
- среднее время наработки на отказ, ч, не менее	220000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
УСПД:	
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч	24
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	113
- при отключении питания, год, не менее	30
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, сут, не менее	45
- сохранение информации при отключении питания, год, не	
менее	10
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, год, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - связи со счетчиком, приведшие к каким-либо изменениям данных и конфигурации;
 - коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство;
 - формирование обобщенного события (или по каждому факту) по результатам автоматической самодиагностики;
 - отсутствие напряжения по каждой фазе с фиксацией времени пропадания и восстановления напряжения;
 - перерывы питания счетчика с фиксацией времени пропадания и восстановления.

- журнал УСПД:

- ввода расчетных коэффициентов измерительных каналов (коэффициентов трансформации измерительных трансформаторов тока и напряжения);
- попыток несанкционированного доступа;
- связей с ИВКЭ, приведших к каким-либо изменениям данных;
- перезапусков ИВКЭ;
- фактов корректировки времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство;
- результатов самодиагностики;
- отключения питания.
- журнал сервера:
 - изменение значений результатов измерений;
 - изменение коэффициентов измерительных трансформаторов тока и напряжения;
 - факт и величина синхронизации (коррекции) времени;
 - пропадание питания;
 - замена счетчика;
 - полученные с уровней ИВКЭ «Журналы событий» ИВКЭ и ИИК.

Защищённость применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:

счетчика;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

УСПД;

сервера;

 защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика;

УСПД;

сервера.

Возможность коррекции времени в:

- -счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформаторы тока	ТОГФ-110	16
Трансформаторы тока	ΤΟΓΦ (Π)	2
Трансформаторы тока	ТВ-ЭК	6
Трансформаторы напряжения	3НОГ	6
Трансформаторы напряжения заземляемые	знолп-эк	6
Счетчики электрической энергии многофункциональные	CЭT-4TM.03M	8
Контроллер многофункциональный	ARIS MT200	1
Программное обеспечение	ПО «ТЕЛЕСКОП+»	1
Паспорт-формуляр	РЭСС.411711.АИИС.1119.02 ПФ	1

Сведения о методиках (методах) измерений

приведены в документе «ГСИ. Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Совгаванская ТЭЦ, аттестованном ООО «МЦМО», уникальный номер записи об аккредитации в реестре аккредитованных лиц Росаккредитации 01.00324-2011.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Акционерное общество «Дальневосточная генерирующая компания» (АО «ДГК») ИНН 1434031363

Адрес: 680000, г. Хабаровск, ул. Фрунзе, д. 49

Изготовитель

Акционерное общество «РЭС Групп» (АО «РЭС Групп»)

ИНН 3328489050

Адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д. 23, оф. 9


Испытательный центр

Акционерное общество «РЭС Групп» (АО «РЭС Групп»)

ИНН 3328489050

Адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д. 23, оф. 9

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312736.

