УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «26» мая 2023 г. № 1074

Лист № 1 Всего листов 9

Регистрационный № 89129-23

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы многониточные измерительные микропроцессорные Суперфлоу-IIE

Назначение средства измерений

Комплексы многониточные измерительные микропроцессорные Суперфлоу-IIE (далее — комплексы) предназначены:

Суперфлоу-IIE — для измерений и преобразования входных сигналов перепада (разности) давления на сужающем устройстве, давления и температуры газа и вычисления значений расхода и объема газа. При давлениях до 7,5 МПа включительно и температурах от 250 до 350 К.

Суперфлоу-IIET (исполнение 1) — для измерений и преобразования входных сигналов давления, температуры газа, выходного импульсного сигнала преобразователя расхода газа и вычисления значений расхода и объема газа. При давлениях до 7,5 МПа включительно и температурах от 250 до 350 К.

Суперфлоу-ПЕТ (исполнение 2) — для измерений и преобразования входных сигналов перепада давления, давления, температуры газа, выходного импульсного сигнала преобразователя расхода газа и вычисления значений расхода и объема газа. При давлениях до 7,5 МПа включительно и температурах от 250 до 350 К.

Суперфлоу-IIET (исполнение 3) — для измерений и преобразования входных сигналов давления, температуры газа, выходного импульсного сигнала преобразователя расхода газа и вычисления значений расхода и объема газа. При давлениях от 0,1 до 30,0 МПа включительно и температурах от 250 до 350 К.

Описание средства измерений

Принцип действия комплексов основан на измерении давления, перепада давления на сужающем устройстве и температуры газа, преобразовании импульсного сигнала расходомера-счётчика газа в значение объёма газа при рабочих условиях и вычислении расхода и объёма газа при стандартных условиях с учетом условно-постоянных параметров: плотности газа при стандартных условиях и компонентного состава газа. Расчет коэффициента сжимаемости и плотности газа выполняется в соответствии с ГОСТ 30319.2-2015 и ГОСТ 30319.3-2015.

Комплексы состоят из:

- вычислителя с программным обеспечением;
- терминала СНІТ СТА01.20.00;
- преобразователей давления 3051, преобразователей давления измерительных «ЭЛЕМЕР-АИР-30М», преобразователей давления измерительных СДВ-SMART;
- преобразователей разности давлений 3051, преобразователей разности давлений измерительных «ЭЛЕМЕР-АИР-30М», преобразователей разности давлений СДВ-SMART.
- термопреобразователей сопротивления ТСМ 012, ТСП 012, преобразователя сопротивления СНАГ687281.017;

- блока питания БП4-12 СНАГ 436.234.001/СТА 10.00.00,
- концентратора сигналов KC-8C/1 (KC-4C/1) СТИГ2.736.013;
- барьера искрозащиты ISCOM СНАГ 436231.001.

Комплексы имеют модификации Суперфлоу-IIE и Суперфлоу-IIET которые отличаются комплектностью и методом измерений расхода и объема газа.

Комплекс модификации Суперфлоу-IIE осуществляет автоматическое непрерывное измерение давления, перепада давления, температуры и вычисление расхода и объема газа при стандартных условиях в соответствии с ГОСТ 8.586.1-2005 — ГОСТ 8.586.5-2005 (ИСО 5167-1:2003) с учетом условно-постоянных параметров: плотности газа при стандартных условиях, содержания азота и углекислого газа. Метод расчета физических свойств по ГОСТ 30319.2-2015.

Комплекс Суперфлоу-IIE может использоваться одновременно на одном, двух или трех измерительных трубопроводах.

Комплекс модификации Суперфлоу-IIE осуществляет отображение на жидкокристаллическом дисплее, а также регистрацию на бумажном носителе с указанием даты и текущего времени следующих параметров:

- расхода газа за интервал, соответствующий виду отчета, приведенного к стандартным условиям, по каждому измерительному трубопроводу;
 - объема газа, приведенного к стандартным условиям;
- индикацию по вызову оператора на экране дисплея терминала следующей информации по каждому измерительному трубопроводу:
 - расхода газа при рабочих условиях, при стандартных условиях, м³/час;
 - давления, $\kappa \Pi a (\kappa r c/cm^2)$;
 - перепада давления, к Π а (кгс/м²);
 - температуры, ^оС;
 - расхода (нарастающего объема) газа от начала контрактных суток, м³.

Комплекс модификации Суперфлоу-ПЕТ выпускается в трех исполнениях.

Комплекс модификации Суперфлоу-ПЕТ исполнение 1:

- осуществляет автоматическое непрерывное измерение давления и температуры газа, преобразование импульсного сигнала преобразователя расхода газа и вычисление расхода и объема газа при стандартных условиях в соответствии с ГОСТ Р 8.740-2011 или ГОСТ 8.611-2013 на одном или двух измерительных трубопроводах. Метод расчета физических свойств по ГОСТ 30319.2-2015.

Комплекс модификации Суперфлоу-ИЕТ исполнение 2:

- осуществляет автоматическое непрерывное измерение давления, перепада давления, температуры и вычисление расхода и объема газа при стандартных условиях в соответствии с ГОСТ 8.586.1-2005 ГОСТ 8.586.5-2005 (ИСО 5167-1:2003) на первом измерительном трубопроводе; Метод расчета физических свойств по ГОСТ 30319.2-2015.
- осуществляет автоматическое непрерывное измерение давления и температуры газа, преобразование импульсного сигнала преобразователя расхода газа и вычисление расхода и объема газа при стандартных условиях в соответствии с ГОСТ Р 8.740-2011 или ГОСТ 8.611-2013 на втором измерительном трубопроводе. Метод расчета физических свойств по ГОСТ 30319.2-2015.

Комплекс модификации Суперфлоу-ИЕТ исполнение 3:

- осуществляет автоматическое непрерывное измерение давления и температуры газа, преобразование импульсного сигнала преобразователя расхода газа и вычисление расхода и объема газа при стандартных условиях в соответствии с ГОСТ Р 8.740-2011 или ГОСТ 8.611-2013. Метод расчета физических свойств по ГОСТ 30319.3-2015. Вычисление физических свойств, на основе данных о компонентном составе.

Комплекс модификации Суперфлоу-IIET осуществляет отображение на жидкокристаллическом дисплее, а также регистрацию на бумажном носителе с указанием даты и текущего времени следующих параметров:

- расхода газа за интервал, соответствующий виду отчета, приведенного к стандартным условиям, по каждому измерительному трубопроводу;
 - объема газа, приведенного к стандартным условиям;
- индикацию по вызову оператора на экране дисплея терминала следующей информации по каждому измерительному трубопроводу:
 - расхода газа при рабочих условиях, при стандартных условиях м³ /час;
 - давления, к Π а (кгс/см²);
 - перепада давления, кПа (кгс/м²) (исполнение 2 измерительный трубопровод 1);
 - температуры, ^оС;
 - расхода (нарастающего объема) газа от начала контрактных суток, м³.

Заводской номер в виде цифрового кода наносится на фирменную планку комплекса методом лазерной гравировки, устанавливаемую на лицевой поверхности вычислителя.

Общий вид комплексов с указанием места нанесения заводского номера и знака утверждения типа представлен на рисунке 1.

Рисунок 1 - Общий вид комплексов многониточных измерительных микропроцессорных Суперфлоу-IIE

Схема пломбировки для защиты от несанкционированного доступа к элементам конструкции комплексов, обозначение места нанесения наклейки изготовителя представлены на рисунке 2.

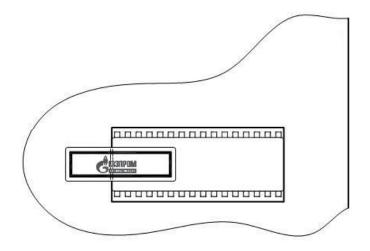


Рисунок 2 - Схема пломбировки от несанкционированного доступа, обозначение места нанесения наклейки изготовителя

Программное обеспечение

Программное обеспечение (далее - Π O) комплексов состоит из встроенного Π O вычислителя и внешнего Π O «СНІТ», устанавливаемого на терминал «СНІТ», либо внешнего Π O «РССНІТ», устанавливаемого на Π К. Сервисная программа DUMPTOPC.

Внешнее ПО вычислителя служит для сервисного обеспечения вычислителя и установлено в терминале «СНІТ», либо на ПК:

ПО «СНІТ» и «РССНІТ» обеспечивает:

- ввод (изменение) в память вычислителя всех данных, необходимых для расчета расхода и количества природного газа;
- замену показаний вышедших из строя преобразователей давления, перепада давления и температуры константами;
 - градуировку преобразователей давления, перепада давления и температуры;
 - вывод всех измеренных и вычисленных параметров;
- снятие и сохранение на персональный компьютер месячных, суточных и периодических отчетов с последующей их визуализацией, русификацией и/или печатью на принтере.

Для имитации терминала с помощью программных средств на персональном компьютере используется ПО «РССНІТ», которое представляет собой полную эмуляцию ручного терминала «СНІТ» и предназначена для ввода и вывода информации с вычислителя, входящего в состав комплекса, снятия отчетов из вычислителя, их последующего сохранения, визуализации и распечатки.

Программа DUMPTOPC предназначена для переноса информации из терминала «СНІТ» в персональный компьютер ПК.

Описание сервисного ПО см. в соответствующих руководствах пользователя:

- DUMPTOPC 3И2.838.009 Д4;
- РССНІТ ЗИ2.838.009 Д5;

Внешнее ПО «СНІТ» и «РССНІТ» являются метрологически не значимым.

Встроенное программное обеспечение (далее – ПО) вычислителя предназначено для выполнения функций комплексов:

- измерение аналоговых и частотных сигналов от внешних преобразователей давления, перепада давления, температуры, расхода;
- расчет расхода и объема газа в соответствии с реализованными методами (методиками) и алгоритмами;
 - формирование периодических архивов;
 - формирование архивов аварийных ситуаций и вмешательств;
 - выполнение калибровки, градуировки каналов измерения;
 - отображение информации на жидкокристаллическом дисплее;

- интерфейс пользователя через порты ввода/вывода RS-232 или RS-485;
- защиту хранящихся в памяти вычислителя данных от преднамеренных и не преднамеренных изменений.

ПО вычислителя располагается в микросхеме ПЗУ, расположенной на плате вычислителя. Программирование (прошивка) ПЗУ осуществляется специальными средствами на предприятии-изготовителе. После выполнения операции программирования микросхема ПЗУ устанавливается в панель платы вычислителя и пломбируется.

Аппаратная защита ПО (кода программы) от умышленных изменений обеспечивается:

- применением специальных аппаратных средств программирования (прошивки) ПЗУ;
- ограничением доступа к ПЗУ путем пломбирования корпуса микросхемы;
- отсутствием возможности модификации кода программы через другие внешние интерфейсы.

Защита ПО от случайных изменений обеспечивается вычислением и периодической проверкой контрольной суммы области хранения исполняемого кода программы.

Метрологические характеристики комплексов нормированы с учетом влияния программного обеспечения. Вычислитель обеспечивает идентификацию встроенного ПО посредством индикации номера версии.

Идентификационные данные ПО комплексов приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные	Значение			
данные (признаки)	Cymand nay IIE	Суперфлоу-ШЕТ	Суперфлоу-ШЕТ	Суперфлоу-ШЕТ
	Суперфлоу-IIE	исполнение 1	исполнение 2	исполнение 3
Идентификационное	Встроенное	Встроенное ПО	Встроенное ПО	Встроенное ПО
наименование ПО	ПО	Встросниос 110	Встросниос 110	Встроенное по
Номер версии				
(идентификационный	SF21RU7C	SF21RU5D	SF21RU6D	SF21RU5E
номер) ПО				
Цифровой				
идентификатор ПО	-	-	-	-
(контрольная сумма)				

Уровень защиты встроенного ПО от преднамеренных и непреднамеренных изменений в соответствии с P 50.2.077-2014 - высокий.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Таблица 2 - Метрологические характеристики					
Наименование характеристики	Значение				
	Суперфлоу-IIE	Суперфлоу-IIET			
Верхние пределы измерений перепада					
давлений, кПа	от 6 до 250	от 6 до 250			
Верхние пределы измерений:		Исполнение 1 и 2			
		от 100 до 7398,67			
избыточного давления, кПа	от 100 до 7398,67 от 100 до 7500	от 100 до 7500			
абсолютного давления, кПа		Исполнение 3			
	01 100 до 7500	от 100 до 29898,67			
		от 100 до 30000			
Пределы допускаемой основной приведенной к					
диапазону измерений погрешности преобразователей					
давления, %	$\pm 0,1$	±0,1			
Пределы допускаемой основной приведенной к					
диапазону измерений погрешности преобразователей					
перепада давления, %	±0,1	±0,1			
Пределы допускаемой абсолютной погрешности					
термопреобразователей сопротивления, °С	±0,3	±0,3			
Диапазон измерений температуры газа, °К (°С)	от 253 до 323	от 253 до 323			
	(от -20 до +50)	(от -20 до +50)			
Пределы допускаемой основной относительной					
погрешности комплекса:					
- выполняющего измерения с использованием					
ультразвуковых, турбинных, ротационных или					
вихревых счетчиков, %	-	$\pm 0,3$			
- выполняющего измерения с помощью стандартных					
СУ, при изменении перепада давления от 9 до 100%					
от В.П.П. (основной диапазон) 1 , %	$\pm 0,5$	$\pm 0,5$			
- при изменении перепада давления от 1 до 9% от	_				
$B.\Pi.\Pi.$ (дополнительный диапазон) $^1, \%$	±5	±5			
Пределы допускаемой дополнительной погрешности	$\pm 0,5$ предела	±0,5 предела			
от изменения температуры окружающего воздуха на	основной	основной			
каждые 10 °C, %	относительной	относительной			
	погрешности	погрешности			
Примечание:					

 $[\]frac{1}{1}$ - определяется по формуле: $\frac{5}{\%B.\Pi.\Pi}$, где В.П.П. — верхний предел измерений преобразователя.

Таблица 3 - Основные технические характеристики

таблица 3 Основные техни теские характеристики		
Наименование характеристики	Значение	
Модификация комплекса	Суперфлоу-IIE	Суперфлоу-ПЕТ
Диапазон частот входного импульсного сигнала, Гц	-	от 0 до 5000
Выходные сигналы преобразователей, В	от 0,8 до 3,2	
Маркировка взрывозащиты	1ExibIIBT3GbX	
Нормальные условия эксплуатации:		
- температура окружающего воздуха, °С	от +18 до +28	
- относительная влажность воздуха при температуре 35°C и		
более низких температурах, без конденсации влаги, %	до 95	
- атмосферное давление, кПа	от 84 до 106,7	
Рабочие условия эксплуатации:		
- температура окружающего воздуха, °С	от -30 до +50	
- относительная влажность воздуха при температуре 35°C и		
более низких температурах, без конденсации влаги, %	до 95	
- атмосферное давление, кПа	от 84 до 106,7	

Знак утверждения типа

наносится на фирменную планку комплекса методом лазерной гравировки, устанавливаемую на боковой поверхности вычислителя, и на титульный лист паспорта типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

таолица 4 — комплектность средства измерении			
Наименование	Обозначение	Количество	
Вычислитель	ЗИ2.838.009/ ЗИ2.838.009Т	1	
Терминал СНІТ	CTA01.20.00	по заказу	
	3051		
Преобразователи давления измерительные	СДВ-SMART	по заказу	
	АИР-30М		
Просбранования получения портолучи	3051	To possops	
Преобразователи разности давлений	СДВ-SMART	по заказу	
измерительные	АИР-30М		
Tanadana	HCX 100M, 100П моделей	по заказу	
Термопреобразователи сопротивления	ТСМ 012, ТСП 012, Кл. А		
Блок искрозащиты ISCOM	СНАГ 436231.001	по заказу	
Блок питания БП / БП-С2/12	СНАГ 436.234.001/	по заказу	
БЛОК ПИТАНИЯ БП / БП-C2/12	CTA 10.00.00		
Концентратор сигналов	СТИГ2.736.013	по заказу	
Руководство по эксплуатации	3И2.838.009 РЭ1/РЭ2	1	
Паспорт	3И2.838.009 ПС1/ПС2/ПС3	1	
Сервисное программное обеспечение	3И2.838.009 Д4	по заказу	
DUMPTOPC, PCCHIT	3И2.838.009 Д5		

Сведения о методиках (методах) измерений

изложены в документе 3И2.838.009 РЭ1/РЭ2 «Комплекс многониточный измерительный микропроцессорный «Суперфлоу-IIET» «Суперфлоу-IIE»». Руководство по эксплуатации».

Нормативные документы, устанавливающие требования к комплексам многониточным измерительным микропроцессорным Суперфлоу-IIE

ГОСТ Р 8.740–2011 ГСИ. Расход и количество газа. Методика измерений с помощью турбинных, ротационных и вихревых расходомеров и счетчиков;

ГОСТ 8.611–2013 ГСИ. Расход и количество газа. Методика (метод) измерений с помощью ультразвуковых преобразователей расхода;

ГОСТ 8.586.(1-5)-2005 ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств;

ГОСТ 30319.2-2015 Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода;

ГОСТ 30319.3-2015 Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о компонентном составе газа;

ТУ 4318-029-001237702-98 Многониточный измерительный микропроцессорный комплекс «Суперфлоу-IIE». Технические условия.

Правообладатель

Публичное акционерное общество «Газпром автоматизация» (ПАО «Газпром автоматизация»)

Юридический адрес: 117405, г. Москва, вн. тер. г. муниципальный округ Чертаново

Южное, ул. Кирпичные Выемки, д. 3, помещ.VI, ком. 21

ИНН 7704028125

Телефон: (499) 580-41-40

Web-сайт: www.gazprom-auto.ru E-mail: gazauto@gazprom-auto.ru

Изготовитель

Публичное акционерное общество «Газпром автоматизация» (ПАО «Газпром автоматизация»)

Адрес юридического лица: 117405, г. Москва, вн. тер. г. муниципальный округ Чертаново Южное, ул. Кирпичные Выемки, д. 3, помещ.VI, ком. 21

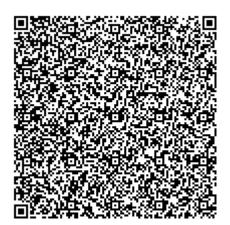
Адрес места осуществления деятельности: 117405, г. Москва, ул. Кирпичные выемки, л. 3

ИНН 7704028125

Телефон: (499) 580-41-40

Web-сайт: www.gazprom-auto.ru E-mail: gazauto@gazprom-auto.ru

Испытательный центр


Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, г. Москва, вн. тер. г. муниципальный округ Очаково-Матвеевское,

ул. Озерная, д. 46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

