УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «14» июня 2023 г. № 1225

Регистрационный № 89319-23

Лист № 1 Всего листов 6

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи термоэлектрические ТПП 2101

Назначение средства измерений

Преобразователи термоэлектрические ТПП 2101 (далее по тексту — термопреобразователи или ТП) предназначены для измерений температуры газообразных сред, в т.ч. агрессивных, в специализированных реакторных установках.

Описание средства измерений

Принцип работы термопреобразователей основан на термоэлектрическом эффекте – генерировании термоэлектродвижущей силы, возникающей из-за разности температур между двумя соединениями различных металлов или сплавов, образующих часть одной и той же цепи.

ТП представляет собой чувствительный элемент (ЧЭ), помещенный в защитную арматуру. Термоэлектроды чувствительного элемента изготовлены из платиновой и платинородиевой проволоки и установлены в корундовый двухканальный изолятор, который помещен в сапфировый чехол. Защитная арматура состоит из коммутационной (или соединительной) головки, монтажного элемента (присоединительного фланца) и погружаемой части. Металлическая часть монтажной части защитной арматуры выполнена из материала 10Х17Н13М2Т. Фланец и соединительная головка выполнены из нержавеющей стали марки 12Х18Н10Т. Материалом погружаемой части ТП является вакуумплотная керамика.

При необходимости, в т.ч. для проведения работ по поверке или калибровки, сапфировый чехол с ЧЭ (измерительная вставка ТП) может быть извлечен из защитной арматуры ТП, и после завершения работ смонтирован обратно.

По способу контакта с измеряемой средой ТП относится к погружаемым средствам измерения.

ТП по уровню взрывозащиты относится к особовзрывобезопасному оборудованию.

TП является стационарным, невосстанавливаемым, неремонтируемым, однофункцинальным, одноканальным изделием.

Заводской номер в виде числового обозначения наносится на маркировочную табличку, прикрепленную к кабельному выводу соединительной головки термопреобразователя. Конструкция средства измерений не предусматривает нанесение знака поверки на корпус ТП.

Фотография общего вида ТП с указанием места нанесения заводского номера приведена на рисунке 1. Габаритный чертеж ТП приведен на рисунке 2.

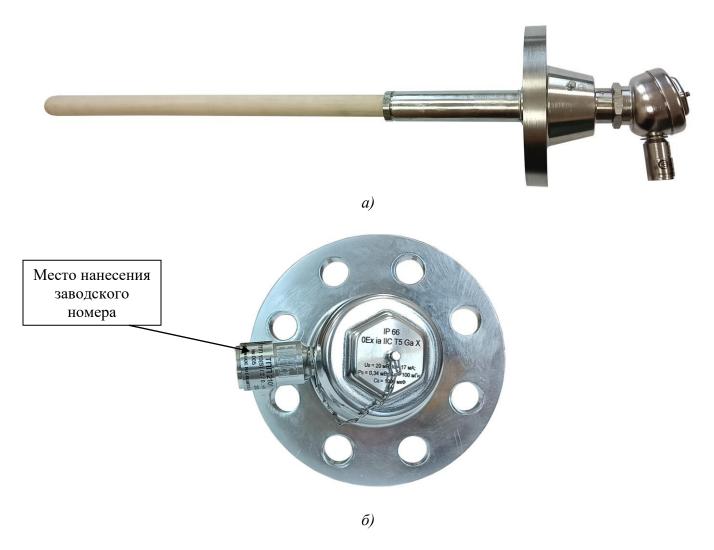


Рисунок 1 — Общий вид преобразователя термоэлектрического ТПП 2101 (a) с указанием места нанесения заводского номера (δ)

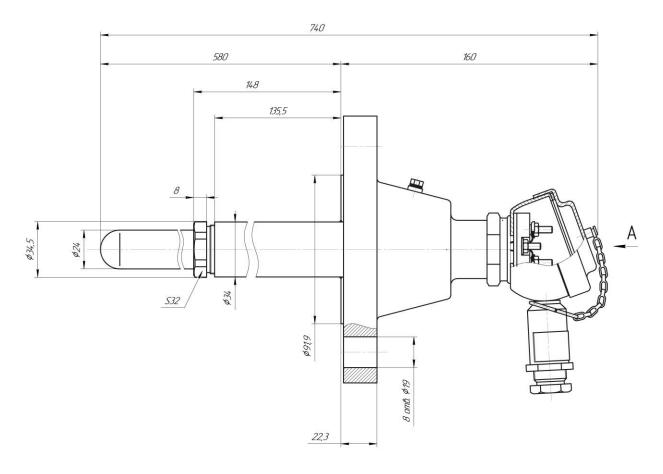


Рисунок 2 – Габаритный чертеж ТП

Пломбировка ТП осуществляется при помощи специальной наклейки, закрывающей крепежные элементы измерительной вставки. Схема пломбировки ТП приведена на рисунке 3.

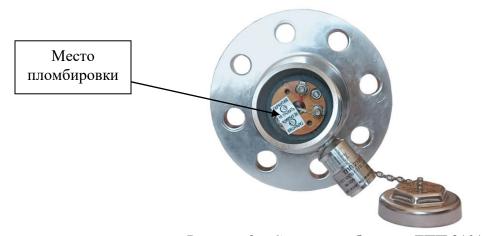


Рисунок 3 – Схема пломбировки ТПП 2101

Программное обеспечение отсутствует.

Метрологические и технические характеристики

Метрологические и основные технические характеристики ТП приведены в таблицах 1-2.

Таблица 1 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений температуры, °С	от 0 до +1450
Номинальная температура применения ТП, °С	+1300
Условное обозначение типа НСХ ЧЭ ТП по ГОСТ Р 8.585-2001	S
Класс допуска по ГОСТ 6616-94 (ГОСТ Р 8.585-2001)	2
Пределы допускаемых отклонений ТЭДС ТП от НСХ (Δ), °С	
- в диапазоне от 0 °C до +600 °C включ.	±1,5
- в диапазоне св. +600 °C	$\pm 0.0025 \cdot t^{(1)}$
Нестабильность ТП, °С, не более	$0.5 \cdot \Delta^{(2)}$

Примечания:

Таблица 2 – Основные технические характеристики

Наименование характеристики	Значение	
Электрическое сопротивление изоляции, МОм, не менее:		
- при температуре от +15 °C до +35 °C и относительной влажности		
от 30 % до 80 %	100	
Испытательное напряжение при проверке электрической прочности	250	
изоляции ТП без пробоя и перекрытия в течение 1 мин, В	230	
Показатель тепловой инерции, с, не более	1000	
Длина монтажной части ТП, мм, не более	580	
Длина погружаемой части ТП, мм, не более	430	
Диаметр погружаемой части ТП, мм, не более	24	
Длина погружаемой части измерительной вставки ТП, мм, не более	550	
Диаметр погружаемой части измерительной вставки ТП, мм, не более	7	
Масса, кг, не более	6,5	
Рабочие условия эксплуатации:		
- температура окружающей среды, °С	от -50 до +85	
- относительная влажность (при температуре окружающего воздуха		
+40 °C), %	до 100	
Маркировка взрывозащиты по ГОСТ 31610.0-2019	0Ex ia IIC T5 Ga X	
Степень защиты от воздействия пыли и воды по ГОСТ 14254-2015	IP66	
Средняя наработка до отказа, ч, не менее:		
- при температуре верхнего предела рабочего диапазона температур	100	
- при температуре применения не выше номинального значения	8000	
Средний срок службы, лет, не менее	1	

Знак утверждения типа

наносится на титульный лист паспорта и Руководства по эксплуатации типографским способом.

⁽¹⁾ t — значение измеряемой температуры, °C; (2) изменение ТЭДС ЧЭ ТП после пребывания ТП при температуре верхнего предела диапазона измерений температуры в течение 2-х ч.

Комплектность средства измерений

Таблица 3 – Комплектность средств измерений

Наименование	Обозначение	Количество
Преобразователь термоэлектрический	ТПП 2101	1 шт.
Паспорт	МКСН.405124.009 ПС	1 экз.
Руководство по эксплуатации	МКСН.405124.009 РЭ	1 экз.
Комплект монтажных частей	ŀ	1 комплект ⁽¹⁾
Копия сертификата соответствия	ŀ	1 экз.
Примечание:		
(1) - по отдельному заказу.		

Сведения о методиках (методах) измерений

приведены в разделе 1.6 «Устройство и работа» документа МКСН.405124.009 РЭ «Преобразователь термоэлектрический ТПП 2101. Руководство по эксплуатации».

Нормативные документы, устанавливающие требования к средствам измерений

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования;

ГОСТ 6616-94 Преобразователи термоэлектрические. Общие технические условия;

Приказ Федерального агентства по техническому регулированию и метрологии от 23 декабря 2022 г. № 3253 «Об утверждении Государственной поверочной схемы для средств измерений температуры»;

МКСН.405124.009 ТУ Преобразователь термоэлектрический ТПП 2101. Технические условия.

Правообладатель

Акционерное общество «Научно-производственное предприятие «ЭТАЛОН» (АО «НПП «ЭТАЛОН»)

ИНН 5504087401

Юридический адрес: 644009, г. Омск, ул. Лермонтова, д. 175

Телефоны: +7 (3812) 36-84-00, +7 (3812) 36-94-53, +7 (3812) 36-79-18

E-mail: fgup@omsketalon.ru

Web-сайт: http://www.omsketalon.ru/

Изготовитель

Акционерное общество «Научно-производственное предприятие «ЭТАЛОН» (АО «НПП «ЭТАЛОН»)

ИНН 5504087401

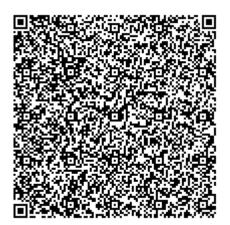
Адрес: 644009, г. Омск, ул. Лермонтова, д. 175

Телефоны: +7 (3812) 36-84-00, +7 (3812) 36-94-53, +7 (3812) 36-79-18

E-mail: fgup@omsketalon.ru

Web-сайт: http://www.omsketalon.ru/

Испытательный центр


Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский институт метрологической службы» (ФГБУ «ВНИИМС») Адрес: 119361, г. Москва, вн. тер. г. муниципальный округ Очаково-Матвеевское,

ул. Озерная, д. 46

Телефон/факс: +7 (495) 437-55-77 / (495) 437-56-66

E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

