УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «05» сентября 2023 г. № 1812

Лист № 1 Всего листов 7

Регистрационный № 89922-23

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики-расходомеры массовые Метран-360М

Назначение средства измерений

Счетчики-расходомеры массовые Метран-360М (далее – расходомеры) предназначены для измерений массового расхода и массы жидкости и газа, объемного расхода и объема жидкости, плотности жидкости, температуры жидкости и газа.

Описание средства измерений

Принцип действия расходомеров при измерении массового расхода и массы, плотности основан на использовании силы Кориолиса, возникающей в трубках первичного измерительного преобразователя (далее – ПП) при прохождении через них измеряемой среды. Фазовые смещения между частотами колебаний противоположных частей трубок, вызванные силами Кориолиса, пропорциональны массовому расходу и массе измеряемой среды. Сопоставляя полученную в результате подстройки резонансную частоту колебаний со значениями резонансных частот, полученных при калибровке на средах с известной плотностью, расходомеры измеряют плотность измеряемой среды.

Объемный расход и объем жидкости определяются на базе измеренных значений массового расхода и массы, плотности жидкости.

Измерение температуры осуществляется термопреобразователем температуры встроенным в $\Pi\Pi$.

Расходомеры состоят из ПП и электронного преобразователя (далее — ЭП), который может быть интегральным и удаленным. ПП служит для измерений и преобразований массового расхода и массы, объемного расхода и объема, плотности и температуры измеряемой среды в электрический сигнал. ЭП обеспечивает обработку электрических сигналов ПП, отображение значений измеренных величин на дисплее и их преобразование в выходные сигналы.

ПП изготавливаются следующих моделей RU, RV, RE, RS, которые отличаются геометрией измерительных трубок.

ЭП изготавливаются следующих моделей Т001, Т010, Т020, Т030, Т300, которые отличаются внешним видом, наличием дисплея и типом выходных сигналов.

Отсутствие движущихся частей в конструкции обеспечивает независимость результатов измерений расходомеров от наличия твердых частиц или иных примесей в измеряемой среде.

Отклонение температуры жидкости и давления жидкости компенсируется внесением соответствующих поправок.

Расходомеры изготавливаются в общепромышленном и взрывозащищённом исполнениях.

Заводской номер расходомеров, состоящий из арабских цифр, наносится методом, принятым на заводе-изготовителе, на маркировочные таблички, расположенные на ПП и ЭП.

Нанесение знака поверки на расходомеры не предусмотрено.

Пломбирование расходомеров не предусмотрено.

Рисунок 3 – Общий вид расходомеров

Рисунок 4 – Общий вид (схема) маркировочных табличек

Программное обеспечение

Программное обеспечение (далее – ПО) расходомеров является встроенным, неизменяемым и несчитываемым, устанавливается предприятием-изготовителем. Основными функциями ПО являются:

- вычисления параметров потока измеряемой среды;
- обработка измеряемой информации;
- индикация результатов измерений на дисплее;
- формирование выходных сигналов;
- настройка расходомеров;
- ведение архива измеренных значений.

Защита ПО расходомеров от несанкционированного доступа обеспечивается системой паролей.

Метрологические характеристики нормированы с учетом влияния ПО.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077–2014.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО		
Номер версии (идентификационный номер) ПО, не ниже	$1.X^*$	
Цифровой идентификатор ПО	_	
* «Х» не относится к метрологически значимой части ПО и принимает значения от 0 до 9.		

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений массового расхода жидкости 1), кг/ч	от 1,2 до 500 000
Диапазон измерений массового расхода газа ¹⁾ , кг/ч	см. примечание 1
Диапазон измерений объемного расхода жидкости, м ³ /ч	см. примечание 2

Наименование характеристики	Значение
Пределы допускаемой относительной погрешности измерений, %:	
 – массового расхода и массы жидкости ^{1), 2)} 	$\pm 0,1^{3}$; $\pm 0,15^{3}$; $\pm 0,2$;
	$\pm 0,25;\pm 0,35;\pm 0,5$
 – массового расхода и массы газа¹⁾²⁾ 	$\pm 0,75;\pm 1,0$
 – объемного расхода и объема жидкости 	см. примечание 3
Диапазон измерений плотности жидкости ⁴⁾ , кг/м ³	от 650 до 2000
Пределы допускаемой абсолютной погрешности измерений плотности жидкости $^{1)}$, кг/м 3	$\pm 0,3;\pm 0,5;\pm 1;\pm 2$
Диапазон измерений температуры измеряемой среды ¹⁾ , °C	от -196 до +350
Пределы допускаемой абсолютной погрешности измерения	$\pm (1 + 0.5 \% \text{ ot } t_{\text{\tiny H3M}}),$
температуры измеряемой среды, °С	где $t_{\rm \scriptscriptstyle H3M}$ — измеренное
	значение температуры, °С
Пределы допускаемой приведенной погрешности воспроизведения	
токового сигнала от 4 до 20 мА, % от диапазона измерений:	
– основной	$\pm 0,\!05$
 дополнительной, вызванной изменением температуры 	
окружающей среды от температуры (23±10) °C на каждый 1 °C,	$\pm 0,002$

 $^{^{1)}}$ Фактические значения указываются в паспорте расходомера.

$$Q_{t} = \frac{ZS}{\delta_{0}} \cdot 100, \tag{1}$$

где

ZS — значение стабильности нуля в соответствии с эксплуатационными документами, кг/ч; — пределы допускаемой погрешности при массовом расходе $Q_{\rm m} \ge Q_{\rm t}$.

При массовом расходе $Q_m < Q_t$ пределы допускаемой относительной погрешности $\delta, \, \%, \,$ рассчитываются по формуле

$$\delta = \pm \frac{ZS}{Q} \cdot 100,\tag{2}$$

где

Q – измеряемое значение массового расхода, кг/ч.

 $^{3)}$ При определении относительной погрешности измерений массового расхода и массы жидкости расходомеров в условиях эксплуатации пределы допускаемой относительной погрешности измерений массового расхода и массы жидкости составляют ± 0.2 % или ± 0.25 %.

 $^{4)}$ Диапазон показаний плотности жидкости от 0 до 3000 кг/м 3 .

Примечания:

1. Верхний M_{Γ_B} , кг/ч, и нижний M_{Γ_H} , кг/ч, пределы диапазона измерений массового расхода газа рассчитываются по формулам:

$$\mathbf{M}_{\mathbf{r}_{\mathbf{B}}} = 0.3 \cdot \mathbf{\rho} \cdot \mathbf{c} \cdot \mathbf{Af},\tag{3}$$

$$M_{\Gamma_{\rm H}} = \frac{ZS}{5} \cdot 100,\tag{4}$$

где

– плотность газа при рабочих условиях, $\kappa \Gamma/M^3$;

с – скорость звука в газе при рабочих условиях, м/ч;

Af – площадь сечения трубок в соответствии с эксплуатационными документами, м².

 $^{^{2)}}$ Указаны пределы допускаемой погрешности при массовом расходе $Q_{\rm m} \ge Q_{\rm t}$, где $Q_{\rm t}$ – значение переходного расхода, кг/ч, рассчитываемое по формуле

Наименование характеристики

Значение

2. Верхний Q_{V_B} , м³/ч,и нижний Q_{V_H} , м³/ч, пределы диапазона измерений объемного расхода жидкости рассчитываются по формуле

$$Q_{v_B} = \frac{Q_{m_B}}{\rho},\tag{5}$$

$$Q_{v_{\rm H}} = \frac{Q_{\rm m_{\rm H}}}{\rho},\tag{6}$$

где

 $egin{array}{lll} Q_{m_B} & - & \mbox{верхний предел диапазона измерений массового расхода жидкости, кг/ч; } \ Q_{m_B} & - & \mbox{нижний предел диапазона измерений массового расхода жидкости, кг/ч; } \end{array}$

 ρ — измеренное значение плотности жидкости, кг/м³.

3. Пределы допускаемой относительной погрешности измерений объемного расхода и объема жидкости δV, %, рассчитываются по формуле

$$\delta V = \pm \sqrt{(\delta M_{\kappa})^2 + \left(\frac{\Delta \rho}{\rho} \cdot 100\right)^2},$$
 (7)

где

 δM_{**} — пределы допускаемой относительной погрешности измерений массового расхода и массы жидкости, %;

 $\Delta \rho$ — пределы допускаемой абсолютной погрешности измерений плотности жидкости, кг/м³.

- 4. При использовании токового выхода погрешность воспроизведения токового сигнала от 4 до 20 мА арифметически суммируется с погрешностью измерений физической величины.
- 5. Основная и дополнительная погрешности воспроизведения токового сигнала от 4 до 20 мА суммируются арифметически.

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Выходные сигналы	токовый от 4 до 20 мА, частотно-
	импульсный от 0 до 12500 Гц, HART,
	Modbus RS-485, Foundation Fieldbus,
	Profibus, Ethernet/IP, Modbus TCP,
	PROFINET
Параметры электрического питания:	
 напряжение постоянного тока, В 	от 20 до 36
 напряжение переменного тока, В 	от 85 до 245
 – частота переменного тока, Гц 	от 50 до 60
Параметры измеряемой среды ¹⁾ :	
– избыточное давление, МПа, не более	41,4
– температура, °C	от -196 до +350
Габаритные размеры, мм, не более ²⁾ :	
– длина	1120
– ширина (без учета фланцев)	302
– высота	1504
Масса, кг, не более ³⁾ :	175,6
Условия эксплуатации:	
 температура окружающей среды в 	
месте установки ПП, °С	от -50 до +80
 температура окружающей среды в 	
месте установки ЭП, °С	от -40 до +60
 – атмосферное давление, кПа 	от 84 до 106,7
Средний срок службы, лет	20
Средняя наработка на отказ, ч	150000

Наименование характеристики	Значение
Маркировка взрывозащиты	1Ex db ia [ia Ga] IIC T6T1 Gb X,
	Ex tb ia [ia Da] IIIC T80°CT450°C Db X,
	1Ex db [ia Ga] IIC T6 Gb X,
	Ex tb [ia Da] IIIC T80°C Db X,
	0Ex ia IIC T6T1 Ga X,
	Ex tb IIIC T80°CT450°C Db X
Степень защиты от внешних воздействий	IP66/IP67

¹⁾ Фактические значения указываются в паспорте расходомера.

Знак утверждения типа

наносится на маркировочные таблички методом, принятым на предприятии-изготовителе, и на титульные листы паспорта и руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность

Наименование	Обозначение	Количество шт./экз.
Счетчик-расходомер массовый	Метран-360М	1
Паспорт	13.5368.000.00 ПС	1
Руководство по эксплуатации 13.5368.	13.5368.000.00 РЭ	1 на 10 штук и меньшее количество
	13.3300.000.0013	при поставке в один адрес

Сведения о методиках (методах) измерений

приведены в разделе 1 «Описание и работа» руководства по эксплуатации 13.5368.000.00 РЭ.

Нормативные документы, устанавливающие требования к средству измерений

Приказ Росстандарта от 26 сентября 2022 г. № 2356 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости»;

Приказ Росстандарта от 11 мая 2022 г. № 1133 «Об утверждении Государственной поверочной схемы для средств измерений объемного и массового расходов газа»;

Приказ Росстандарта от 1 ноября 2019 г. № 2603 «Об утверждении Государственной поверочной схемы для средств измерений плотности»;

Приказ Росстандарта от 23 декабря 2022 г. № 3253 «Об утверждении Государственной поверочной схемы для средств измерений температуры»;

ТУ 4213-102-51453097-2022 Счетчики-расходомеры массовые Метран-360М. Технические условия.

 $^{^{2)}}$ Предельные отклонения размеров не превышают ± 1 мм.

³⁾ Масса указана с приварными встык фланцами.

Правообладатель

Акционерное общество «Промышленная группа «Метран» (АО «ПГ «Метран») ИНН 7448024720

Юридический адрес: 454103, Челябинская обл., г.о. Челябинский, вн. р-н центральный, г. Челябинск, пр-кт. Новоградский, д. 15

Изготовитель

Акционерное общество «Промышленная группа «Метран» (АО «ПГ «Метран») ИНН 7448024720

Адрес: 454103, Челябинская обл., г.о. Челябинский, вн. р-н центральный, г. Челябинск, пр-кт. Новоградский, д. 15

Испытательный центр

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ» (ООО «ПРОММАШ ТЕСТ»)

Юридический адрес: 119415, г. Москва, пр-кт Вернадского, д. 41, стр. 1, эт. 4, помещ. І, ком. 28

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312126.

с привлечением:

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ Метрология» (ООО «ПРОММАШ ТЕСТ Метрология»)

Юридический адрес: 119415, г. Москва, пр-кт Вернадского, д. 41, стр. 1, помещ. 263 Уникальный номер записи в реестре аккредитованных лиц № RA.RU.314164.

