УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «02» ноября 2023 г. № 2303

Лист № 1

Регистрационный № 90388-23 Всего листов 10

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Саратоворгсинтез»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Саратоворгсинтез» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (ТТ), трансформаторы напряжения (ТН), счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приемапередачи данных;

2-й уровень — информационно-вычислительный комплекс (ИВК), включающий в себя сервер баз данных (СБД) (далее по тексту - сервер ИВК), устройство синхронизации системного времени УССВ-2 (далее-УССВ), локально-вычислительную сеть, программное обеспечение (ПО) «АльфаЦЕНТР», автоматизированные рабочие места, технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, технические средства для обеспечения локальной вычислительной сети (ЛВС) и разграничения прав доступа к информации.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
- средняя на интервале времени 30 мин активная (реактивная) электрическая мошность.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы сервера ИВК, где осуществляется вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН. Сервер ИВК АИИС КУЭ с периодичностью опроса не реже 1 раза в сутки опрашивает счетчики электроэнергии и считывает с них тридцатиминутный профиль мощности для каждого канала учета и журналы событий.

Сервер ИВК АИИС КУЭ раз в сутки формирует и отправляет по выделенному каналу связи отчеты в формате XML на автоматизированное рабочее место (APM) энергосбытовой организации. АРМ энергосбытовой организации подписывает данные отчеты электронной цифровой подписью (ЭЦП) и отправляет по каналу связи сети Интернет в АО «АТС», региональному филиалу АО «СО ЕЭС» и всем заинтересованным субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривают поддержание шкалы всемирного координированного времени на всех уровнях АИИС КУЭ (ИИК, ИВК). В состав СОЕВ входит устройство синхронизации системного времени типа УССВ-2, синхронизирующее собственную шкалу времени с национальной шкалой координированного времени UTC (SU) по сигналам навигационных систем ГЛОНАСС.

Сервер ИВК АИИС КУЭ, периодически с установленным интервалом проверки текущего времени, сравнивает собственную шкалу времени со шкалой времени УССВ-2 и при расхождении ± 1 с и более, сервера ИВК АИИС КУЭ производит синхронизацию собственной шкалы времени со шкалой времени УССВ-2.

Сравнение шкалы времени счетчиков со шкалой времени сервера ИВК осуществляется во время сеанса связи со счетчиком (1 раз в 30 минут). При обнаружении расхождения шкалы времени счетчика от шкалы времени сервера ИВК равного ± 2 с и более, выполняется синхронизация шкалы времени счетчика.

Журналы событий счетчика электрической энергии, ИВК отражают: факты коррекции времени с обязательной фиксацией времени (дата, часы, минуты, секунды) до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Нанесение знака поверки на корпус АИИС КУЭ не предусмотрено.

Заводской номер АИИС КУЭ нанесен на маркировочную табличку типографским способом в виде цифрового кода, которая крепиться на корпус сервера ИВК.

Общий вид сервера ИВК АИИС КУЭ с указанием места нанесения заводского номера представлен на рисунке 1.

Рисунок 1 - Общий вид сервера ИВК с указанием места нанесения заводского номера.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню - «высокий» в соответствии Р 50.2.077-2014. Идентификационные данные метрологически значимой части ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные метрологически значимой части ПО

Идентификационные данные	Значение
Идентификационное наименование модуля ПО	ac_metrology.dll
Номер версии (идентификационный номер) модуля ПО	12.1
Цифровой идентификатор модуля ПО	3E736B7F380863F44CC8E6F7BD211C54
Алгоритм вычисления цифрового идентификатора модуля ПО	MD5

Конструкция АИИС КУЭ исключает возможность несанкционированного влияния на программное обеспечение и измерительную информацию.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ приведен в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

1 ao.	Таблица 2 - Состав измерительных каналов АИИС КУЭ				
¥		Состав измерительного канала			
	Наименование измерительного канала	Трансформатор тока	Трансформатор напряжения	Счетчик электрической энергии	ИВК
1	2	3	4	5	6
1	ПС 110 кВ ГПП-2 Саратоворгсинтез, ОРУ-110 кВ, ввод 110 кВ Т-1	TG 200/1, KT 0,2S Per. № 75894-19	TVI145 110000/√3:100/√3 KT 0,2 Per. № 71404-18	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Per. № 31857-06	
2	ПС 110 кВ ГПП-2 Саратоворгсинтез, ОРУ-110 кВ, ввод 110 кВ Т-2	ТG 200/1, КТ 0,2S Рег. № 75894-19	TVI145 110000/√3:100/√3 KT 0,2 Per. № 71404-18	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Per. № 31857-06	54074-13 / BK
3	ПС 35 кВ БНС ТЭЦ 2, КРУН-6 кВ, 1 СШ, яч.4, фид. 3 Нитрон 1 цепь	ТПОЛ 10 400/5, КТ 0,5S Рег. № 1261-02	HOM-6 6000/100 KT 0,5 Per. № 159-49	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Per. № 31857-06	УССВ-2, рег. № 54074-13 Сервер ИВК
4	ПС 35 кВ БНС ТЭЦ-2, КРУН-6 кВ, 2 СШ, яч.11, фид. 4 Нитрон 2 цепь	ТПОЛ 10 400/5, КТ 0,5S Рег. № 1261-02	HOM-6 6000/100 KT 0,5 Per. № 159-49	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Per. № 31857-06	Á

Продолжение таблицы 2

11po	Іродолжение таблицы 2 1 2 3 4 5				
1	<u> </u>	3	4		6
5	ПС 35 кВ ПС 32, РУ-6 кВ, 1СШ, яч.5	ТЛМ-10 100/5, КТ 0,5 Рег. № 2473-00	НТМИ-6 6000/100 КТ 0,5 Рег. № 831-53	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Per. № 31857-06	
6	ПС 35 кВ ПС 32, РУ-6 кВ, 1СШ, яч.11	ТЛМ-10 150/5, КТ 0,5 Рег. № 2473-00	НТМИ-6 6000/100 КТ 0,5 Рег. № 831-53	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Per. № 31857-06	
7	ПС 20 6 кВ, РУ-6 кВ, 2СШ, яч.4	ТЛО-10 300/5, КТ 0,5S Рег. № 25433-11	ЗНОЛП-ЭК 6000/√3:100/√3 КТ 0,5 Рег. № 68841-17	CЭT- 4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17	
8	ПС 35 кВ ПС 32, РУ-6 кВ, 2СШ, яч.29	ТПЛ-10 150/5, КТ 0,5 Рег. № 1276-59	НТМИ-6-66 6000/100 КТ 0,5 Рег. № 2611-70	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Per. № 31857-06	/
9	ПС 16 6 кВ, РУ-6 кВ, 1СШ, яч.3	ТПЛ-10 150/5, КТ 0,5 Рег. № 1276-59	НТМИ-6-66 6000/100 КТ 0,5 Рег. № 2611-70	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Per. № 31857-06	2, per. № 54074-13 Cepsep ИВК
10	ПС 9 6 кВ, РУ-6 кВ, 2 СШ, яч.8	ТПЛ-10 75/5, КТ 0,5 Рег. №1276-59 ТПЛМ-10 75/5, КТ 0,5 Рег. №2363-68	НТМИ-6 6000/100 КТ 0,5 Рег. № 831-53	A1802RAL- P4GB-DW-4 KT 0,2S/0,5 Рег. № 31857-06	YCCB-2, per. № 54074-13 Cepвep ИВК
11	ПС 20 6 кВ, РУ-6 кВ, 1СШ, яч.15	ТЛО-10 150/5, КТ 0,5S Рег. № 25433-11	ЗНОЛП-ЭК 6000/√3:100/√3 КТ 0,5 Рег. № 68841-17	CЭT- 4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17	
12	Саратовская ТЭЦ- 2, ОРУ 35 кВ, яч.15, ВЛ-35 кВ ТЭЦ-2 - Химкомбинат 1ц	ТВ 600/5, КТ 0,5 Рег. № 19720-00	HOM-35 35000/√3:100/√3 KT 0,5 Per. № 187-49	СЭТ-4ТМ.03М КТ 0,2S/0,5 Рег. № 36697-08	
13	Саратовская ТЭЦ- 2, ОРУ 35 кВ, яч.17, ВЛ-35 кВ ТЭЦ-2 - Химкомбинат 2ц	ТВ 600/5, КТ 0,5 Рег. № 19720-00	3HOM-35-65 35000/√3:100/√3 KT 0,5 Per. № 912-70	СЭТ-4ТМ.03М КТ 0,2S/0,5 Рег. № 36697-08	

Продолжение таблицы 2

1	2	3	4	5	6
14	Саратовская ТЭЦ- 2, ГРУ- 6 кВ, яч.1, фидер 1Ш	ТПОЛ 10 800/5, КТ 0,5S Рег. № 1261-02	ЗНОЛП-К-10(6) У2 6000/√3:100/√3 КТ 0,5 Рег. № 57686-14	CЭT-4TM.03M KT 0,2S/0,5 Per. № 36697-08	
15	Саратовская ТЭЦ- 2, ГРУ- 6 кВ, яч.2, фидер 2Ш	ТПОЛ 10 800/5, КТ 0,5S Рег. № 1261-02	ЗНОЛП-К-10(6) У2 6000/√3:100/√3 КТ 0,5 Рег. № 57686-14	CЭT-4TM.03M KT 0,2S/0,5 Per. № 36697-08	
16	Саратовская ТЭЦ- 2, ГРУ- 6 кВ, яч.6, фидер 6Ш	ТПОЛ 10 400/5, КТ 0,5S Рег. № 1261-02	ЗНОЛП-К-10(6) У2 6000/√3:100/√3 КТ 0,5 Рег. № 57686-14	CЭT-4TM.03M KT 0,2S/0,5 Per. № 36697-08)74-13 /
17	Саратовская ТЭЦ- 2, ГРУ- 6 кВ, яч.26, фидер 26Ш	ТПОЛ 10 400/5, КТ 0,5S Рег. № 1261-02	ЗНОЛП-К-10(6) У2 6000/√3:100/√3 КТ 0,5 Рег. № 57686-14	CЭT-4TM.03M KT 0,2S/0,5 Per. № 36697-08	YCCB-2, per. № 54074-13 Cepsep <i>I</i> IBK
18	Саратовская ТЭЦ- 2, ГРУ- 6 кВ, яч. 28, фидер 28Ш	ТПОЛ 10 800/5, КТ 0,5S Рег. № 1261-02	ЗНОЛП-К-10(6) У2 6000/√3:100/√3 КТ 0,5 Рег. № 57686-14	CЭТ-4TM.03M KT 0,2S/0,5 Per. № 36697-08	yccB-
19	Саратовская ТЭЦ- 2, ГРУ- 6 кВ, яч.31, фидер 31Ш	ТПОЛ 10 800/5, КТ 0,5S Рег. № 1261-02	ЗНОЛП-К-10(6) У2 6000/√3:100/√3 КТ 0,5 Рег. № 57686-14	СЭТ-4ТМ.03М КТ 0,2S/0,5 Рег. № 36697-08	
20	Саратовская ТЭЦ- 2, ГРУ- 6 кВ, яч.49, фидер 49Ш	ТПОЛ 10 400/5, КТ 0,5S Рег. № 1261-02	ЗНОЛП-К-10(6) У2 6000/√3:100/√3 КТ 0,5 Рег. № 57686-14	СЭТ-4ТМ.03М КТ 0,2S/0,5 Рег. № 36697-08	

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 2. Допускается замена УССВ на аналогичные утвержденных типов.
- 3. Допускается замена сервера АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
- 4. Допускается изменение наименований ИК, без изменения объекта измерений.
- 5. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ, как их неотъемлемая часть.

Таблица 3 – Основные метрологические характеристики ИК АИИС КУЭ

The standard of the Balbie Melperior in termine hapakire provincia international of			
Номер ИК	Вид электрической энергии	Границы основной погрешности $\pm \delta$, %	Границы погрешности в рабочих условиях $\pm \delta$, %
1, 2	Активная	0,5	1,0
1, 2	Реактивная	0,9	1,7
3, 4, 14-20	Активная	1,2	1,7
3, 4, 14-20	Реактивная	1,8	2,7
5 6 9 10 12 12	Активная	1,2	2,9
5, 6, 8-10, 12, 13	Реактивная	1,8	4,5
7 11	Активная	1,3	2,2
7, 11	Реактивная	2,0	3,7
Пределы абсолютной погрешности смещения шкалы времени компонентов СОЕВ АИИС КУЭ относительно национальной шкалы координированного времени Российской Федерации UTC (SU), (±) с			5

Примечания:

- 1 Характеристики погрешности ИК даны для измерений электроэнергии (получасовая)
- 2~B качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95.
- 3 Границы погрешности результатов измерений приведены для $\cos \varphi = 0.8$, токе TT, равном 100 % от Іном для нормальных условий и для рабочих условий при $\cos \varphi = 0.8$, токе TT, равном 5 % от Іном при температуре окружающего воздуха в месте расположения счетчиков от $+5 \, ^{\circ}\text{C}$ до $+35 \, ^{\circ}\text{C}$

Таблица 4 – Основные технические характеристики АИИС КУЭ

таолица 4 – Основные технические характеристики Аййс КуЭ				
Наименование характеристики	Значение			
1	2			
Количество измерительных каналов	20			
Нормальные условия				
параметры сети:				
- напряжение, % от U _{ном}	от 98 до 102			
- ток, % от I _{ном}	от 100 до 120			
- коэффициент мощности	0,8			
- частота, Гц	50			
температура окружающей среды для счетчиков, °С	от +21 до +25			
Условия эксплуатации				
параметры сети:				
- напряжение, % от U _{ном}	от 90 до 110			
- Tok, $\%$ ot I_{hom}	от 1(2) до 120			
- коэффициент мощности соѕф (sinф)	от 0,5 _{инд.} До 1 _{емк}			
- частота, Гц	от 49,6 до 50,4			
температура окружающей среды для ТТ и ТН, °С	от -40 до +60			
температура окружающей среды для счетчиков, °С	от +5 до + 35			
температура окружающей среды для сервера ИВК, °С	от +10 до + 30			
атмосферное давление, кПа	от 80,0 до 106,7			
относительная влажность, %, не более	98			

Продолжение таблицы 4

1	2
Надежность применяемых в АИИС КУЭ компонентов	
Счетчики:	
- среднее время наработки на отказ, ч, не менее	
СЭТ-4ТМ.03М (рег. № 36697-08)	140000
СЭТ-4ТМ.03М (рег. № 36697-17)	220000
Альфа А1800	120000
УССВ-2:	
- среднее время наработки на отказ, ч, не менее	74500
Сервер ИВК:	
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Счетчики:	
CЭT-4TM.03M (per. № 36697-08)	
-каждого массива профиля при времени интегрирования 30	
минут, сут	113
CЭT-4TM.03M (per. № 36697-17)	
-каждого массива профиля при времени интегрирования 30	
минут, сут	114
Альфа А1800	
- графиков нагрузки для одного канала с интервалом 30	
минут, сут, не менее	1200
Сервер ИВК:	
- хранение результатов измерений и информации о	
состоянии средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера ИВК с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники ОРЭМ с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- в журнале событий счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера ИВК;
- защита информации на программном уровне:
 - результатов измерений (при передаче, возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервере ИВК.

Знак утверждения типа

наносится на титульные листы формуляра на АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

II.	05	Количество,		
паименование	Обозначение	шт.		
Сервер ИВК	TG	6		
	TB	6		
	ТЛМ-10	4		
Трансформатор тока	ТЛО-10	6		
	ТПЛ-10	5		
	ТПЛМ-10	1		
	ТПОЛ 10	18		
	TVI145	6		
	3НОЛП-К-10(6) У2	22		
	ЗНОЛП-ЭК	6		
They show you by your green	3HOM-35-65	3		
грансформатор напряжения	HOM-35	3		
	HOM-6	4		
	НТМИ-6	2		
	НТМИ-6-66	2		
	A1802RAL-P4GB-DW-4	9		
Счетчик электрической энергии	СЭТ-4ТМ.03М	9		
	CЭT-4TM.03M.01	2		
Устройство синхронизации системного времени	УССВ-2	1		
Сервер ИВК	-	1		
Автоматизированное рабочее место				
Документация				
Формуляр	ФО 26.51.43/21/23	1		

Сведения о методиках (методах) измерений

приведены в документе «Методика (метод) измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Саратоворгсинтез». МВИ 26.51.43/21/23, аттестованной ФБУ «Самарский ЦСМ». Уникальный номер записи в реестре аккредитованных лиц № RA.RU.311290 от 16.11.2015.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Общество с ограниченной ответственностью «Саратоворгсинтез» (ООО «Саратоворгсинтез»)

ИНН 6451122250

Юридический адрес: 410059, Саратовская обл., г. Саратов, пл. Советско-Чехословацкой дружбы, д. Б/н

Телефон: (8452) 98-50-04

E-mail: office@saratov.lukoil.com

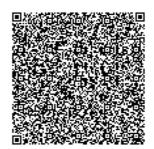
Изготовитель

Общество с ограниченной ответственностью «ЭНЕРГОМЕТРОЛОГИЯ» (ООО «ЭНЕРГОМЕТРОЛОГИЯ»)

ИНН 7714348389

Адрес: 125040, г. Москва, ул. Ямского поля 3-я, д. 2, к. 12, этаж 2, помещ II, ком. 9

Телефон: 8 (495) 230-02-86 E-mail: info@energometrologia.ru


Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Самарской области» (ФБУ «Самарский ЦСМ»)

Адрес: 443013, г. Самара, пр-кт Карла Маркса, д. 134

Телефон: 8 (846) 336-08-27 Факс: 8 (846) 336-15-54 E-mail: info@samaragost.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU 311281.

