УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «02» ноября 2023 г. № 2303

Лист № 1 Всего листов 9

Регистрационный № 90392-23

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «УРАЛЭНЕРГОСБЫТ» 1-я очередь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «УРАЛЭНЕРГОСБЫТ» 1-я очередь (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

Измерительные каналы (далее – ИК) АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее — ИИК), которые включают в себя трансформаторы тока (далее — TT), трансформаторы напряжения (далее — TH) и счетчики активной и реактивной электроэнергии (далее — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень — информационно-вычислительный комплекс (далее — ИВК), включающий в себя каналообразующую аппаратуру, сервер АИИС КУЭ, автоматизированные рабочие места персонала (APM), устройство синхронизации времени (далее — УСВ) ИСС и программное обеспечение (далее — ПО) ПК «Энергосфера».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются усредненные значения активной мощности и среднеквадратические значения напряжения и тока за период

0,02 с. По вычисленным среднеквадратическим значениям тока и напряжения производится вычисление полной мощности за период. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на верхний — второй уровень системы, на котором выполняется дальнейшая обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление, оформление отчетных документов, отображение информации, передача данных в организации — участники оптового рынка электрической энергии и мощности, в том числе в АО «АТС», АО «СО ЕЭС» и смежным субъектам, через каналы связи в виде ХМL-файлов установленных форматов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности с использованием электронной подписи субъекта рынка.

Сервер АИИС КУЭ имеет возможность принимать измерительную информацию от ИВК смежных АИИС КУЭ, зарегистрированных в Федеральном информационном фонде по обеспечению единства измерений.

АИИС КУЭ имеет систему обеспечения единого времени (далее – СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ, синхронизирующим собственную шкалу времени с национальной шкалой координированного времени Российской Федерации UTC(SU) по сигналам навигационной системы ГЛОНАСС.

Сравнение шкалы времени сервера АИИС КУЭ со шкалой времени УСВ осуществляется с периодичностью не реже 1 раза в 1 сутки. При наличии расхождения более чем ± 1 с производится синхронизация шкалы времени сервера АИИС КУЭ со шкалой времени УСВ.

Сравнение шкалы времени счетчиков со шкалой времени сервера АИИС КУЭ осуществляется при каждом опросе счетчика, но не реже 1 раза в 1 сутки. При наличии расхождения более чем ± 2 с производится синхронизация шкалы времени счетчиков со шкалой времени сервера АИИС КУЭ.

Факты коррекции времени с обязательной фиксацией времени (дата, часы, минуты, секунды) до и после коррекции или величины коррекции времени, на которую были скорректированы указанные устройства, отражаются в журналах событий счетчиков и сервера АИИС КУЭ.

Нанесение знака поверки на средство измерений не предусмотрено. Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Маркировка заводского номера и даты выпуска АИИС КУЭ наносится на этикетку, расположенную на корпусе серверного шкафа, типографским способом. Дополнительно заводской номер указывается в паспорте-формуляре.

Заводской номер АИИС КУЭ: 119

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Идентификационные данные ПО

Tuominga T Tigenting magnomisse gamisse 110				
Идентификационные признаки	Значение			
Идентификационное наименование ПО	ПК «Энергосфера»			
	Библиотека pso_metr.dll			
Номер версии (идентификационный номер) ПО	1.1.1.1			
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B			
Алгоритм вычисления цифрового идентификатора ПО	MD5			

ПО ПК «Энергосфера» не оказывает влияния на метрологические характеристики ИК АИИС КУЭ.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «средний» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав ИК АИИС КУЭ и их основные метрологические характеристики

~		Измерительные компоненты			D	Метрологические характеристики ИК		
5	Наименование ИК	TT	ТН	Счётчик	УСВ, сервер	Вид электро- энергии и мощности	Основная погрешность, %	Погрешность в рабочих условиях,
1	2	3	4	5	6	7	8	9
1	ТП АТС РУ-10 кВ, КЛ-10 кВ в сторону ГСК Рубин-3	ТПЛ-10У3 ТПЛ Кл. т. 0,5 Ктт 50/5 Рег. № 1276-59 Рег. № 47958-16	НОМ-10-66 Кл. т. 0,5 Ктн 10000/100 Рег. № 4947-75	Меркурий 230 ART-00 PQRSIDN Кл. т. 0,5S/1,0 Рег. № 80590-20	УСВ: ИСС Рег. № 71235-18	активная	±1,2 ±2,9	±3,3 ±5,7
2	ТП АТС РУ-0,4 кВ, КЛ-0,4 кВ в сторону ГСК Рубин-3М	Т-0,66 Кл. т. 0,5 Ктт 200/5 Рег. № 52667-13	_	Меркурий 236 ART-03 PQRS Кл. т. 0,5S/1,0 Рег. № 80589-20	сервер: Microsoft Hyper-V	активная	±1,0 ±2,5	±3,3 ±5,6

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
3	КТП ДПР 27,5, РУ-04, вывод Т- 1 0,4 кВ	ТШП Кл. т. 0,5 Ктт 600/5 Рег. № 64182-16		Меркурий 236 ART-03 PQRS Кл. т. 0,5S/1,0 Рег. № 80589-20	УСВ: ИСС Рег. № 71235-18 сервер: Microsoft Hyper-V	активная	±1,0 ±2,5	±3,3 ±5,6
Пр	Пределы допускаемых смещений шкалы времени COEB относительно национальной шкалы времени UTC(SU), с				土	5		

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Основная погрешность указана для $\cos \varphi = 0.9$ при $I=I_{\text{ном}}$.
- 4 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ при I=0.05 $I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 до +40 °C.
- 5 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 6 Допускается замена УСВ на аналогичные утвержденных типов.
- 7 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке с внесением изменений в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Таблица 3 – Основные технические характеристики ИК	2
Наименование характеристики	Значение
Количество ИК	3
Нормальные условия:	
параметры сети:	00 101
- напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle{\mathrm{Hom}}}$	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности соsф	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- tok, $\%$ ot I_{hom}	от 5 до 120
- коэффициент мощности соsф	от 0,5 инд до 0,8 емк
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -45 до +40
- температура окружающей среды в местах расположения	
счетчиков, °С	от 0 до +40
- температура окружающей среды в месте расположения сервера, °С	
- магнитная индукция внешнего происхождения в местах	от +10 до +25
расположения счетчиков, мТл, не более	
	0,5
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
- среднее время наработки на отказ, ч, не менее	35 000
- среднее время восстановления работоспособности, сут., не более	3
Сервер:	
- среднее время наработки на отказ, ч, не менее	70 000
- среднее время восстановления работоспособности, ч, не более	1
УСВ:	
- среднее время наработки на отказ, ч, не менее	125 000
- среднее время восстановления работоспособности, ч, не более	2
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях, сутки,	
не менее	45
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей тока и напряжения;
 - испытательной коробки;
 - сервера (серверного шкафа);
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - сервера.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- сервере (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

– измерений 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
1	2	3
Трансформатор тока	ТПЛ-10У3	1
Трансформатор тока	ТПЛ	1
Трансформатор тока	T-0,66	3
Трансформатор тока	ТШП	3
Трансформатор напряжения	HOM-10-66	2
Счётчик электрической энергии многофункциональный	Меркурий 230 ART-00 PQRSIDN	1
Счётчик электрической энергии многофункциональный	Меркурий 236 ART-03 PQRS	2

Продолжение таблицы 4

1	2	3
Устройство синхронизации времени	ИСС	1
Сервер АИИС КУЭ	Microsoft Hyper-V	1
Программное обеспечение	ПК «Энергосфера»	1
Паспорт-Формуляр	98276366.422231.119.ФО	1

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «УРАЛЭНЕРГОСБЫТ» 1-я очередь», аттестованном ООО «Спецэнергопроект», уникальный номер записи в реестре аккредитованных лиц № RA.RU.312236.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Общество с ограниченной ответственностью «Уральская энергосбытовая компания» (ООО «УРАЛЭНЕРГОСБЫТ»)

ИНН 7453313477

Юридический адрес: 454090, Челябинская обл., Г.О. Челябинский, вн. р-н Центральный, г. Челябинск, пр-кт Ленина, д. 28Д, помещ. 4, эт. 3, оф. 6

Телефон: +7 (351) 259-64-59 Факс: +7 (351) 259-64-59

Изготовитель

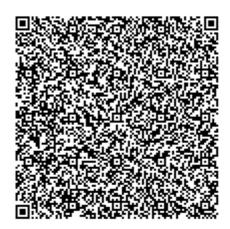
Общество с ограниченной ответственностью «Агентство энергетических решений» (ООО «АЭР»)

ИНН 7722771911

Адрес: 111116, г. Москва, ул. Лефортовский Вал, д. 7Г, стр. 5

Телефон: +7 (499) 681-15-52 Факс: +7 (499) 681-15-52

Испытательный центр


Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, эт. 4, помещ. І, ком. 6, 7

Телефон: +7 (495) 410-28-81 E-mail: info@sepenergo.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312429.

