УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «10» ноября 2023 г. № 2348

 Лист № 1

 Регистрационный № 90436-23
 Всего листов 8

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы измерения массы жидкости и газа в резервуарах ПС-6900

Назначение средства измерений

Системы измерения массы жидкости и газа в резервуарах ПС-6900 (далее — система) предназначены для измерений уровня, плотности, температуры жидкости, уровня подтоварной воды и вычислений объема и массы жидкостей в резервуарах и при их приеме в резервуар и отпуске из резервуара, а также регистрации результатов измерений и вычислений в архиве и передаче их в системы более высокого уровня.

Описание средства измерений

К данному типу средств измерений относятся системы измерения массы жидкости и газа в резервуарах ПС-6900 модификации 331.

Принцип работы системы при проведении измерений на одном резервуаре состоит в формировании контроллером, в соответствии с заданным оператором режимом измерений, управляющих команд на измерение одного или нескольких контролируемых параметров: уровня жидкости в резервуаре, уровня подтоварной воды в резервуаре, плотности и температуры жидкости в резервуаре на одном или нескольких уровнях, проведении измерений контролируемых параметров уровнемером с измерительным датчиком и передаче результатов измерений в контроллер. Контроллер проводит обработку результатов измерений и регистрацию в архиве результатов измерений.

Уровнемер с измерительным датчиком работает по принципу сервоприводного уровнемера. Измерительный датчик подвешивается на стальной трос, который в свою очередь наматывается на измерительную катушку, оснащенную прецизионными канавками. Через магнитную муфту ось измерительной катушки соединяется с шаговым двигателем.

При измерении уровня жидкости в резервуаре отслеживается положение измерительного датчика на поверхности жидкости, в результате изменения которого меняется натяжение стального троса. Уровнемер, оснащенный электронным датчиком веса, отслеживает плавучесть измерительного датчика на основе уравновешивания выталкивающей силы, действующей на него. С помощью шагового двигателя уровнемер корректирует положение измерительного датчика на поверхности жидкости в соответствии с измененным уровнем жидкости.

В измерительном датчике установлены датчики температуры и плотности и при проведении измерений погружаются в жидкость на необходимый уровень.

Измерение уровня подтоварной воды проводится измерительным датчиком емкостным методом с помощью электродов, расположенных в нижней части измерительного датчика.

Система при измерении массы жидкостей, в том числе нефтепродуктов, реализует косвенный метод статических измерений по ГОСТ 8.587-2019.

В состав системы входят:

- от одного до восьми уровнемеров;
- контроллер резервуарного учета ПСК-6900 (далее контроллер);

- конфигурационное программное обеспечение (опционально).

Уровнемеры в составе системы модификации 331 применяются с измерительным датчиком MF.

Система обеспечивает выполнение следующих функций для каждого уровнемера в ее составе:

- измерение уровня жидкости в резервуаре по запросу оператора и в режиме реального времени;
- измерение плотности и температуры жидкости в резервуаре на заданном уровне по запросу оператора;
 - измерение уровня подтоварной воды в резервуаре по запросу оператора;
- измерение средней плотности и средней температуры жидкости в резервуаре в автоматическом режиме по запросу оператора;
- измерение объема и массы жидкости в резервуаре в автоматическом режиме по запросу оператора;
 - определение дна резервуара;
 - измерение массы жидкости при операциях приема и сдачи;
- выдача предупредительных сигналов о достижении уровня жидкости в резервуаре минимально или максимально допустимого значения уровня жидкости.

Перечень измеряемых параметров определяется выбранным режимом измерений. В зависимости от выбранного режима измерений последовательно в автоматическом режиме могут измеряться несколько параметров.

Контроллер ПСК-6900 обеспечивает выполнение следующих функций:

- выбор и настройку режима измерений;
- формирование команд управления для уровнемеров;
- считывание результатов измерений уровня жидкости, плотности жидкости, температуры жидкости, уровня подтоварной воды от уровнемеров;
 - считывание параметров состояния уровнемеров;
 - ввод параметров измерительного датчика уровнемера и катушки измерительной;
- автоматический ввод поправок, введенных в контроллер ПСК-6900, в результаты измерений уровня жидкости, плотности жидкости, температуры жидкости, уровня подтоварной воды уровнемерами с измерительными датчиками;
 - вычисление средней температуры жидкости в резервуаре;
 - вычисление средней плотности жидкости в резервуаре;
 - вычисление объема и массы жидкости в горизонтальных стальных резервуарах;
- вычисление объема и массы жидкости в вертикальных стальных резервуарах с понтоном и без понтона;
- вычисление объема и плотности нефтепродукта, приведенного к стандартным условиям (15 или 20 °C, избыточное давление 0 Па), в соответствии с Р 50.2.076-2010;
- вычисление массы жидкости (продукта) в резервуаре в начале операции приема/сдачи, массы жидкости (продукта) в резервуаре по окончании операции приема/сдачи и их разность;
- ввод в память контроллера условно постоянных значений уровня жидкости и/или подтоварной воды и/или средней плотности жидкости и/или средней температуры жидкости в резервуаре (определяется выбранным режимом измерений);
- сохранение в архиве результатов измерений и вычислений, выполненных по запросу оператора;
- настройку параметров сохранения и сохранение в архиве результатов измерений уровня жидкости в резервуаре в реальном масштабе времени;
 - сохранение в архиве журнала событий;
- защиту от несанкционированного доступа настроек системы, результатов измерений и вычислений;

- обмен информацией с системами более высокого уровня по протоколам Modbus TCP и Modbus RTU;
 - управление процессом измерений из систем более высокого уровня.

Настройка системы проводится с помощью конфигурационного программного обеспечения TestContrReservoir (далее - КПО). При необходимости, КПО позволяет осуществлять управление процессами измерений (выбор и настройка режима измерений), отображать результаты измерений, архив измерений, архив журнала событий.

Архивы результатов измерений, архив событий, градуировочные таблицы резервуаров, поправочные коэффициенты уровня хранятся на съемной SD-карте.

При проведении измерений в контроллере выбирается резервуар и необходимый режим измерений. После запуска измерений контроллер последовательно отправляет команды в уровнемер на измерение необходимого параметра и считывает результаты его измерений. При необходимости, в процессе измерений или в соответствии с выбранным режимом измерений, оператор вводит в контроллер условно-постоянные значения контролируемых параметров. По завершении измерений и/или ввода в контроллер всех необходимых параметров контроллер проводит их обработку и сохраняет результаты измерений, введенные условно-постоянные параметры (при наличии) и результаты вычислений в архиве.

Фотографии общего вида составных частей системы представлены на рисунках 1 и 2.

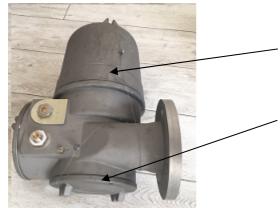


Рисунок 1 – Контроллер

5.

Рисунок 2 – Уровнемер с измерительным датчи-

Места нанесения клейм/пломб на составные части системы изображены на рисунках 3 -

пломбирование крышки отсека с электронными платами и джамперами защиты от записи

пломбирование крышки отсека с измерительной катушкой

Рисунок 3 – Пломбирование уровнемера

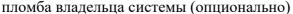


Рисунок 5 — Пломбирование корпуса контроллера

Рисунок 4 — Пломбирование слота с картой памяти

Рисунок 6 – Внешний вид таблички

Табличка с серийным номером и другими основными данными устанавливается на лицевую панель контроллера. Общий вид таблички представлен на рисунке 6. Нанесение знака поверки на средство измерений не предусмотрено.

Программное обеспечение

Программное обеспечение системы состоит из программного обеспечения контроллера и программного обеспечения уровнемеров.

Программное обеспечение уровнемеров предназначено для проведения измерений контролируемых параметров в резервуарах в соответствии с управляющими командами от контроллера и передачи результатов измерений и данных о состоянии уровнемера в контроллер. Программное обеспечение уровнемера не разделено на метрологически значимую часть ПО и метрологически незначимую часть ПО. Изменение программного обеспечения может проводиться на изготовителе. Проверка влияния метрологически незначимой части ПО уровнемера на его метрологические характеристики проводится в процессе поверки систем.

Программное обеспечение контроллера предназначено для формирования управляющих команд для уровнемеров, считывания измерительной информации от уровнемеров, обработки результатов измерений, формирования архива с результатами измерений и вычислений, контроля поправочных коэффициентов и градуировочных таблиц резервуаров от несанкционированных изменений, ввода условно-постоянных параметров. Программное обеспечение контроллера разделено на метрологически значимую часть ПО и метрологически незначимую часть ПО. Идентификация ПО контроллера проводится с помощью конфигурационного программного обеспечения TestContrReservoir или по Modbus RTU.

Защита от несанкционированного доступа к настройкам в контроллере обеспечивается системой паролей.

Таблица 1 – Идентификационные данные программного обеспечения уровнемера

Идентификационные данные (признаки)	Значение	
1	2	
Идентификационное наименование ПО	-	
Номер версии (идентификационный номер) ПО	не ниже 11.20	
Цифровой идентификатор ПО	не отображается	

Таблица 2 – Идентификационные данные программного обеспечения контроллера ПСК-6900

Идентификационные данные (признаки)	ификационные данные (признаки) Значение	
1	2	
Идентификационное наименование ПО	ReservoirContr.bin	
Номер версии (идентификационный номер) ПО	1.XYZ	
Цифровой идентификатор ПО (Modbus CRC16)	31827	
$\overline{\text{где X} = 0 - 9}, Y = 0 - 9, Z = 0 - 9$		

Защита ПО системы от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по п. 4.5 Р 50.2.077-2014. Примененные специальные средства защиты в достаточной мере исключают возможность несанкционированной модификации, обновления (загрузки), удаления и иных преднамеренных изменений метрологически значимого ПО и измеренных (вычисленных) данных.

Метрологические и технические характеристики

Таблина 3 – Метрологические характеристики

Таблица 3 – Метрологические характеристики		
Наименование характеристики	Значение	
Измеряемая среда (продукт)	жидкости неагрессивные к ма-	
	териалам поплавка, нефтепро-	
	дукты (топлива для реактивных	
	двигателей, автомобильные	
	бензины, дизельные топлива)	
Нижний предел измерений уровня продукта, м	0,2	
Верхний предел измерений уровня продукта, м	от 3 до 20	
Диапазон измерения уровня подтоварной воды, м	от 0 до 0,25	
Диапазон измерений температуры продукта, °С	от -40 до +70	
Диапазон измерений плотности продукта, кг/м ³	от 650 до 1100	
Пределы абсолютной погрешности измерений уровня про-		
дукта, мм, при уровне продукта в резервуаре L:		
- $0.2 \le L \le 3.5$ M	±2	
$-3,5 < L \le 20$ м	±3	
Пределы абсолютной погрешности измерений уровня подто-	±2	
варной воды, мм	±2	
Пределы допускаемой абсолютной погрешности при измере-	+0.5 (+0.0)	
нии плотности продукта 1 , кг/м 3	±0,5 (±0,9)	
Пределы допускаемой абсолютной погрешности при измере-	±0,5	
нии температуры продукта, °С	10,3	
Пределы допускаемой относительной погрешности при из-		
мерении массы нефтепродукта в резервуаре 2, 3, %, при массе		
нефтепродукта:		
- до 200 т	$\pm 0,65$	
- от 200 т и более	±0,5	
Пределы допускаемой относительной погрешности при из-	+0.4	
мерении объема нефтепродукта в резервуаре ^{2, 3)} , %	$\pm 0,4$	
Пределы допускаемой относительной погрешности при вы-		
числении объема и массы продукта в резервуаре, объема и	±0,01	
плотности нефтепродуктов при стандартных условиях, %		

Примечания:

 $^{^{(1)}}$ — определяется методом поверки; $^{(2)}$ — для жидкостей, кроме нефтепродуктов, определяется методикой измерений в зависимости от условий применения системы;

^{3) –} значение погрешности с учетом погрешности градуировочной таблицы резервуара при соблюдении требований методики измерений.

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение	
Температура окружающей среды, °С:		
- уровнемер	от -40 до +70	
- контроллер ПСК-6900	от +10 до +60	
Параметры электрического питания контроллера:		
- напряжение переменного тока, В	220±22	
- частота переменного тока, Гц	50±1	
Параметры электрического питания уровнемеров:		
- напряжение постоянного тока, В	от 24 до 48	
- напряжение переменного тока, В	220±22	
- частота переменного тока, Гц	50±1	
Интерфейсы:		
- Ethernet (Modbus TCP)	1	
- Modbus RTU Slave	1	
- релейные выходы	до 6	
Габаритные размеры контроллера (В×Ш×Г), мм, не более	90×485×310	
Срок службы, лет	10	

Знак утверждения типа

наносится на табличку и титульные листы руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система измерения массы жидкости и газа в		1
резервуарах ПС-6900		
Руководство по эксплуатации	26.51.52-001-41541794 РЭ	1
Паспорт	26.51.52-001-41541794 ПС	1
Руководство пользователя на конфигурацион-	НТРП. 421457.002-13 РП	1
ное программное обеспечение		
Конфигурационное программное обеспечение	TestContrReservoir	1
Документация на составные части системы		1 комплект

Сведения о методиках (методах) измерений

приведены в пункте 2.5 руководства по эксплуатации 26.51.52-001-41541794 РЭ.

Нормативные и технические документы, устанавливающие требования к средству измерений

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения;

ТУ 26.51.52-001-41541794-2021 Системы измерения массы жидкости и газа в резервуарах Π C-6900.

Правообладатель

Общество с ограниченной ответственностью «ПРОСЕНС» (ООО «ПРОСЕНС»)

ИНН 7727056739

Юридический адрес: 115419, г. Москва, вн. тер. г. муниципальный округ Донской,

пр-д 2-й Рощинский, д. 8, эт. 6, помещ. XI, ком. 12

Тел./факс: +7 (499) 391-60-75 E-mail: info@pro-sens.ru

Изготовитель

Общество с ограниченной ответственностью «ПРОСЕНС» (ООО «ПРОСЕНС»).

ИНН 7727056739

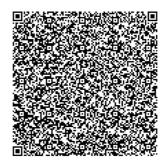
Адрес: 115419, г. Москва, вн. тер. г. муниципальный округ Донской,

пр-д 2-й Рощинский, д. 8, этю 6, помещ. XI, ком. 12

Тел./факс: +7 (499) 391-60-75 E-mail: info@pro-sens.ru

Испытательный центр

Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)


Адрес: 119361, г. Москва, вн. тер. г. муниципальный округ Очаково-Матвеевское,

ул. Озерная, д. 46

Тел./факс: (495)437-55-77 / 437-56-66

Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

