УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «25» декабря 2023 г. № 2789

Лист № 1 Всего листов 8

Регистрационный № 90878-23

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы программно-технические Неман-Р

Назначение средства измерений

Комплексы программно-технические Неман-Р (далее по тексту – комплексы или ПТК) предназначены для измерения входных аналоговых сигналов силы постоянного тока, напряжения постоянного тока, электрического сопротивления, частоты, поступающих от первичных датчиков (в том числе преобразователей термоэлектрических и термопреобразователей сопротивления), воспроизведения сигналов силы и напряжения постоянного электрического тока, приема и выдачи дискретных и аналоговых сигналов сигнализации и управления исполнительными механизмами.

Описание средства измерений

Комплексы Неман-Р являются проектно-компонуемыми изделиями и представляют собой двухуровневую структуру. Нижний уровень реализуется на основе встраиваемых промышленных электронно-вычислительных машин (ЭВМ) производства фирм

- ЗАО НПФ «Доломант» (системы ввода-вывода распределенные Fastwel I/O, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее рег. №) 58557-14)- исполнение ПТК «Неман-Р»;
- Группа Компаний ТЕКОН (контроллеры многофункциональные МФК3000, МФК1500, рег. № 45216-10) исполнение ПТК «Неман-Р»/Текон;
- АО «ТРЭИ» (устройства программного управления «TREI-5В», рег. № 31404-08) исполнение ПТК "Неман-Р"/Трэи;
- ООО «Прософт-Системы» (контроллеры программируемые логические REGUL R600, рег. № 53113-13; комплексы измерительно вычислительные «REGUL», рег. № 57023-14) исполнение ПТК "Неман-Р"/Прософт;
- АО «ЭлеСи» (контроллеры программируемые ЭЛСИ-ТМК, рег. № 62545-15) исполненеие ПТК «Неман-Р»/ЭлеСи;
- Shenyang Vhandy Technology Co., Ltd., Китай (контроллеры программируемые логические GCAN) исполнение ПТК «Неман-Р»/GCAN.

Встраиваемые промышленные ЭВМ могут состоять из комплектующих:

- блоков обработки данных;
- процессорных модулей;
- модулей памяти;
- плат интерфейсных;
- модулей ввода-вывода;
- блоков питания;
- корпусов;
- кабелей соединительных.

Верхний уровень реализуется на базе SCADA-систем производства фирм:

- МастерСкада (ООО «ИнСАТ»)
- InTouch/System Platform (АО «Шнейдер Электрик»);
- SCADA Infinity (AO «ЭлеСи»);
- SCADA Альфа Платформа (АО «Атомик Софт»).

В состав комплекса, в зависимости от заказа, входит следующее оборудование:

- а) шкафы (щиты) автоматики (ЩА), в которых располагаются программно-технические средства, аппаратура и комплектующие изделия;
- б) автоматизированное рабочее место (APM) персонала, выполняющее функции оперативно-технического поста управления технологическим объектом, представляет собой совокупность технических средств и программного обеспечения SCADA систем;
 - в) шкафы (щиты) питания (ЩП);
 - г) пульт резервного управления (ПРУ);
 - д) серверное и коммуникационное оборудование.

Принцип действия комплексов основан на измерении аналоговых входных сигналов от первичных измерительных преобразователей (датчиков), их преобразовании в цифровой код, обработке, измерении и выдаче унифицированного электрического выходного сигнала по ГОСТ 26.011-80, пропорционального входному сигналу.

Комплексы предназначены для создания на их основе систем автоматического управления (САУ) основного и вспомогательного промышленного технологического оборудования и автоматизированных систем управления (АСУ) производственнотехнологическими комплексами, а также рассчитаны на интеграцию со смежными системами и системами вышестоящего уровня по физическим и интерфейсным линиям связи.

Общий вид комплексов приведен на рисунке 1. Место нанесения заводского номера в виде цифрового кода отображено на рисунке 2. Допускается нанесение заводского номера на лицевую поверхность двери шкафа.

Защита от несанкционированного доступа к внутренним частям комплекса обеспечивается путем закрытия дверей шкафов на встроенный замок.

Рисунок 1 – Общий вид шкафа автоматики комплекса

Место нанесения заводского номера

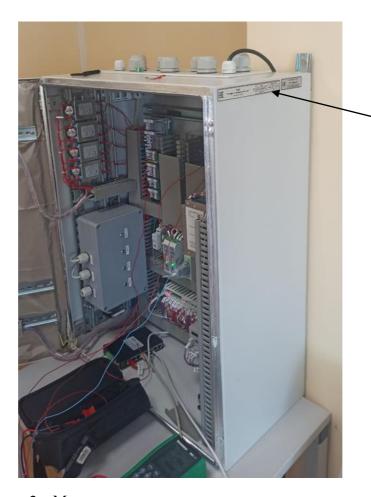


Рисунок 2 – Место нанесения заводского номера на комплекс

Пломбирование комплексов не предусмотрено.

Программное обеспечение

Программное обеспечение комплексов (ПО) состоит из программного обеспечения контроллеров, входящих в состав комплекса, и программного обеспечения SCADA-системы, предназначенного для отображения информации.

ПО контроллеров состоит из базового программного обеспечения (БПО), системного программного обеспечения (СПО) и встроенного программного обеспечения модулей (ВПО).

БПО и СПО выполняет функции управления работой контроллера и не является метрологически значимой частью ΠO .

ВПО модулей осуществляет функции сбора, обработки и хранения измерительной информации и является метрологически значимой частью ПО.

Конструкция комплексов исключает возможность несанкционированного влияния на метрологически значимое ПО и измерительную информацию.

В зависимости от состава и исполнения комплекса может применяться одно или несколько ВПО из приведенных в таблице 1.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077—2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО отображения информации

Идентификационные данные	Значение				
(признаки)					
Идентификационное наименование ПО	Мастер Скада	SCADA – система «Infinity»	InTouch/ System Platform	SCADA Альфа Платформа	ПО панели оператора Овен
Номер версии (идентификационный номер ПО), не ниже	3.6	3	2012	5.8	3.0
Цифровой идентификатор ПО	-	-	-		-

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

$\frac{1}{4}$ аолица $2 - \frac{1}{4}$ Петрол	оти теские характ	еристики			
Тип сигнала	Диапазон входного сигнала	Диапазон выходного сигнала	Пределы допускаемой основной приведенной погрешности, % от диапазона выходного сигнала	Пределы допускаемой дополнительной приведенной погрешности при изменении температуры окружающего воздуха на каждые 10 °C, % от	
				диапазона	
				выходного сигнала	
1	2	3	4	5	
Входные сигналы от TC: Pt100, Pt50 $(\alpha=0.00385 ^{\circ}\text{C}^{-1})$	в соответствии с НСХ по ГОСТ 6651-2009	от -200 до +850°C			
100M, 50M $(\alpha = 0.00426 ^{\circ}\text{C}^{-1})$		от -50 до +200 °C			
100Π, 50Π (α=0,00391 °C ⁻¹)		от -200 до +660 °C			
100M, 50M $(\alpha = 0.00428 ^{\circ}\text{C}^{-1})$		от -180 до +200°C	±0,2 % от диапазона	$\pm 0,1~\%$ от диапазона	
Входные сигналы от $T\Pi^{1)}$: В		от +600 до +1800°C	выходного сигнала	выходного сигнала	
E	в соответствии с	от -100 до +1000 °C			
J, K	НСХ по ГОСТ Р 8.585-2001	от -100 до +1200 °C			
L		от -200 до +800 °C			
N		от -100 до +1300 °C			
R, S		от 0 до +1700 °C			
T		от -100 до +400 °C			

Продолжение таблицы 2

1	2	3	4	5
Входные сигналы силы и напряжения постоянного тока Входные сигналы	от 4 до 20 мА от 0 до 10 В от -10 до 10 В	Диапазон (линейный, отображаемый четырьмя десятичными разрядами) выбирается при программировании в единицах	±0,2 % от	±0,1 % от
сопротивления	от 0 до 1 кОм		диапазона	диапазона
Входные сигналы частоты переменного тока	от 1 Гц до 20 кГц		выходного сигнала	выходного сигнала
Выходные сигналы силы и напряжения постоянного тока	-	от 4 до 20 мА от 0 до 10 В от -10 до 10 В		

Примечание

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Нормальные условия эксплуатации:	
- температура окружающего воздуха, °С	от +15 до +25
- относительная влажность воздуха, %	от 30 до 80
- атмосферное давление, кПа	от 84 до 107
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	
при размещении в отапливаемом помещении	от +5 до +50
при размещении в неотапливаемом помещении	от -50 до +50
- относительная влажность воздуха, %	
при размещении в отапливаемом помещении	до 80 при +35 °C
при размещении в неотапливаемом помещении	до 95 при +35 °C
- атмосферное давление, кПа	от 84 до 107

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

Минимальная комплектность средства измерений приведена в таблице 4. Допускается расширение комплекта документации.

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Кол.
1	2	3
ПТК «Неман-Р»	ACA1.370.XXX (РЛЕГ21.XXX.XXX)	1

¹⁾ Пределы допускаемой погрешности канала компенсации температуры холодного спая (без учета погрешности встроенного термочувствительного элемента) включены в значение основной погрешности

1	2	3	
Составные части ПТ	К «Неман-Р»		
III. 1 (www.) annu annu (III.A.)	АСА2.55Х.ХХХ(РЛЕГ	*	
Шкаф (щит) автоматики (ЩА)	22.55X.XXX)		
ADM THE TAXABLE PROPERTY.	ACA2.390.XXX	*	
АРМ, пульт управления	(РЛЕГ22.390.ХХХ)	*	
C	ACA1.000.XXX	*	
Стойка серверного оборудования	(РЛЕГ21.000.ХХХ)		
Документа	Р КИД		
П	АСА2.55Х.ХХХ ПС	1	
Паспорт	(РЛЕГ22.55Х.ХХХПС)		
D	ACA2.55X.XXX PЭ	1	
Руководство по эксплуатации	(РЛЕГ22.55Х.ХХХРЭ)	<u> </u>	
Примечание:			
* - Количество, тип и функциональное назначение оп	пределяется заказом (проектом)		

Сведения о методиках (методах) измерений

приведены в разделе «Порядок работы» паспорта ACA2.55X.XXX ПС (РЛЕГ22.55X.XXXПС).

Нормативные документы, устанавливающие требования к средствам измерений

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ 14014-91 Приборы и преобразователи измерительные цифровые напряжения, тока, сопротивления. Общие технические требования и методы испытаний;

ТУ 4318-155-00158818-2015 Комплексы программно-технические «НЕМАН-Р» (ПТК «Неман-Р»). Технические условия.

Правообладатель

Публичное акционерное общество «Газпром автоматизация» (ПАО «Газпром автоматизация»)

ИНН 7704028125

Юридический адрес: 117405, г. Москва, вн. тер. г. муниципальный округ Чертаново Южное, ул. Кирпичные Выемки, д. 3, помещ. VI, ком. 21

Телефон: (499) 580-41-40

Web-сайт: www.gazprom-auto.ru E-mail: gazauto@gazprom-auto.ru

Изготовитель

Публичное акционерное общество «Газпром автоматизация» (ПАО «Газпром автоматизация»)

ИНН 7704028125

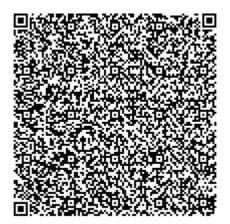
Адрес юридического лица: 117405, г. Москва, вн. тер. г. муниципальный округ Чертаново Южное, ул. Кирпичные Выемки, д. 3, помещ.VI, ком. 21

Адрес места осуществления деятельности по изготовлению продукции: 236022, г. Калининград, Гвардейский пр-кт, д. 15

Телефон: (499) 580-41-40

Web-сайт: www.gazprom-auto.ru E-mail: gazauto@gazprom-auto.ru

Испытательный центр


Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, г. Москва, вн. тер. г. муниципальный округ Очаково-Матвеевское,

ул. Озерная, д. 46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

