УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «16» января 2024 г. № 91

Регистрационный № 91029-24

Лист № 1 Всего листов 9

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Сургут» Южно-Балыкское ЛПУ МГ КС-5 «Южно-Балыкская», Тобольское ЛПУ МГ КС-9 «Тобольская»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Сургут» Южно-Балыкское ЛПУ МГ КС-5 «Южно-Балыкская», Тобольское ЛПУ МГ КС-9 «Тобольская» (далее — АИИС КУЭ) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ состоит из двух уровней:

- 1-й уровень измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;
- 2-й уровень информационно-вычислительный комплекс (ИВК), выполненный на основе серверного оборудования промышленного исполнения. ИВК включает в себя специализированное программное обеспечение «АльфаЦЕНТР», каналообразующую аппаратуру, сервер синхронизации времени, сервер баз данных (БД) и автоматизированные рабочие места (АРМ) ООО «Газпром энерго» и АО «Газпром энергосбыт».

ИИК, ИВК, технические средства приема-передачи данных и линии связи образуют измерительные каналы (ИК).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0.02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 минут;

 средняя на интервале времени 30 минут активная и реактивная электрическая мощность.

ИВК обеспечивает выполнение следующих функций:

- периодический (один раз в сутки) и по запросу автоматический сбор результатов измерений электрической энергии;
- автоматический сбор данных о состоянии средств измерений и состоянии объектов измерений;
 - хранение не менее 3,5 лет результатов измерений и журналов событий;
- автоматический сбор результатов измерений после восстановления работы каналов связи, восстановления питания;
- перемножение результатов измерений, хранящихся в базе данных, на коэффициенты трансформации ТТ и ТН;
 - формирование отчетных документов;
- ведение журнала событий с фиксацией изменений результатов измерений, осуществляемых в ручном режиме, изменений коэффициентов ТТ и ТН, синхронизации (коррекции) времени с указанием времени до и после синхронизации (коррекции), пропадания питания, замены счетчика, событий, отраженных в журналах событий счетчиков;
 - конфигурирование и параметрирование технических средств ИВК;
 - сбор и хранение журналов событий счетчиков;
 - ведение журнала событий ИВК;
- синхронизацию времени в сервере БД с возможностью коррекции времени в счетчиках электроэнергии;
- аппаратную и программную защиту от несанкционированного изменения параметров и любого изменения данных;
 - самодиагностику с фиксацией результатов в журнале событий;
 - дистанционный доступ к компонентам АИИС КУЭ.

ИВК осуществляет автоматический обмен (передачу и получение) результатами измерений и данными коммерческого учета электроэнергии с субъектами оптового рынка электрической энергии и мощности (ОРЭМ), с другими АИИС КУЭ утвержденного типа, а также с инфраструктурными организациями ОРЭМ, в том числе: АО «АТС», АО «СО ЕЭС».

Обмен результатами измерений и данными коммерческого учета электроэнергии между ИВК, АРМ, информационными системами субъектов оптового рынка и инфраструктурными организациями ОРЭМ осуществляется следующим образом:

- посредством локальной вычислительной сети для передачи данных от сервера БД на APM;
- посредством электронной почты в виде электронных документов XML в формате 80020 для передачи данных от сервера БД на APM;
- посредством электронной почты в виде электронных документов XML в формате 80020 для передачи данных от сервера БД или APM во внешние системы.

Информация о средствах измерения, при необходимости, передается в виде электронного документа XML в формате 80030. Электронные документы XML заверяются электронно-цифровой подписью на APM и/или сервере БД.

Информационные каналы связи в АИИС КУЭ построены следующим образом:

- посредством интерфейса RS-485, наземного канала связи E1 (основной канал), спутникового канала (резервный канал) передачи данных от счетчиков до ИВК;
- посредством локальной вычислительной сети интерфейса Ethernet для передачи данных с сервера БД на APM;
- посредством наземного канала связи E1 для передачи данных от уровня ИВК во внешние системы и/или APM (основной канал);
 - посредством спутникового канала для передачи данных от уровня ИВК во

внешние системы и/или АРМ (резервный канал).

В АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ), включающая в себя сервер синхронизации времени, часы Сервера БД и счетчиков. Сервер БД получает шкалу времени UTC(SU) в постоянном режиме от сервера синхронизации времени. Синхронизация часов Сервера БД с сервером синхронизации времени происходит при расхождении более чем на ± 1 с. Сличение времени часов счетчиков с временем часов Сервера БД осуществляется во время сеанса связи (не реже 1 раза в сутки). Корректировка времени часов счетчиков выполняется при достижении расхождения со временем часов Сервера БД ± 1 с.

Журналы событий счетчика и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Нанесение знака поверки на средство измерений не предусмотрено. Заводской номер 15.001-2023 наносится типографским способом в формуляр и на информационную табличку корпуса сервера БД методом шелкографии.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 - Идентификационные признаки метрологически значимой части ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	ac_metrology.dll
Номер версии (идентификационный номер) программного обеспечения	не ниже 12.1
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	3e736b7f380863f44cc8e6f7bd211c54

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4 и 5.

Таблица 2 – Состав ИК

No IAIC	Наименование ИК	TT	TH	Счетчик	ИВК
ИК 1	2	3	4	5	6
1	ПС 220 кВ КС-5	ТЛ-10У3-40	НАМИ-10	СЭТ-	0
_	3РУ 10 кВ №2,	Кл.т. 0,5	Кл.т. 0,2	4TM.03M	
	яч.22 Ввод 1	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Кл.т. 0,2S/0,5	
		Рег. № 4346-74	Рег. № 11094-87	Рег. № 36697-	
				17	
2	ПС 220 кВ КС-5	ТЛ-10У3-40	НАМИ-10	СЭТ-	
	3РУ 10 кВ №2,	Кл.т. 0,5	Кл.т. 0,2	4TM.03M	
	яч.33 Ввод 2	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Кл.т. 0,2S/0,5	
		Рег. № 4346-74	Рег. № 11094-87	Рег. № 36697-	
				08	
3	ПС 220 кВ КС-5	ТЛ-10У3-40	НАМИ-10	СЭТ-4ТМ.03	
	3РУ 10 кВ №1,	Кл.т. 0,5	Кл.т. 0,2	Кл.т. 0,2S/0,5	
	яч.19 Ввод 3	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-	
		Рег. № 4346-74	Рег. № 11094-87	04	
4	ПС 220 кВ КС-5	ТЛ-10У3-40	НАМИ-10	СЭТ-4ТМ.03	
	3РУ 10 кВ №1,	Кл.т. 0,5	Кл.т. 0,2	Кл.т. 0,2S/0,5	ССВ-1Г
	яч.6 Ввод 4	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-	Рег. №
		Рег. № 4346-74	Рег. № 11094-87	04	58301-14;
5	ПС 220 кВ КС-5	ТЛ-10У3-40	НАМИ-10	СЭТ-4ТМ.03	Сервер БД
	3РУ 10 кВ №1,	Кл.т. 0,5	Кл.т. 0,2	Кл.т. 0,2S/0,5	
	яч.65 Ввод 5	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-	
		Рег. № 4346-74	Рег. № 11094-87	04	
6	ПС 220 кВ КС-5	ТЛ-10У3-40	НАМИТ-10	СЭТ-4ТМ.03	
	3РУ 10 кВ №1,	Кл.т. 0,5	Кл.т. 0,5	Кл.т. 0,2S/0,5	
	яч.44 Ввод 6	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-	
		Рег. № 4346-74	Рег. № 16687-13	04	
7	ПС 220 кВ КС-5	ТЛ-10У3-40	НАМИ-10	СЭТ-4ТМ.03	
	3РУ 10 кВ №2,	Кл.т. 0,5	Кл.т. 0,2	Кл.т. 0,2S/0,5	
	яч.5 Ввод 7	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-	
		Рег. № 4346-74	Рег. № 11094-87	04	
8	ПС 220 кВ КС-5	ТЛ-10У3-40	НАМИ-10	СЭТ-4ТМ.03	
	3РУ 10 кВ №2,	Кл.т. 0,5	Кл.т. 0,2	Кл.т. 0,2S/0,5	
	яч.14 Ввод 8	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-	
		Рег. № 4346-74	Рег. № 11094-87	04	

Продолжение таблицы 2

1	2	3	4	5	6
9	ПС 110 кВ КС-9	ТЛ-10У3-40	НАМИ-10	СЭТ-4TM.03М	
	3РУ-10 кВ №1, яч.4	Кл.т. 0,5	Кл.т. 0,2	Кл.т. 0,2S/0,5	
	ф.Ввод 1 10 кВ	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 36697-12	
		Рег. № 4346-74	Рег. № 11094-87		
10	ПС 110 кВ КС-9	ТЛ-10У3-40	НАМИТ-10	СЭТ-4TM.03	
	ЗРУ-10 кВ №1,	Кл.т. 0,5	Кл.т. 0,5	Кл.т. 0,2S/0,5	
	яч.42 ф.Ввод 2 10	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-04	
	кВ	Рег. № 4346-74	Рег. № 16687-02		
11	ПС 110 кВ КС-9	ТЛ-10У3-40	НАМИТ-10	СЭТ-4TM.03	
	ЗРУ-10 кВ №1,	Кл.т. 0,5	Кл.т. 0,5	Кл.т. 0,2S/0,5	
	яч.21 ф.Ввод 3 10	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-04	
	кВ	Рег. № 4346-74	Рег. № 16687-02		
12	ПС 110 кВ КС-9	ТЛ-10У3-40	НАМИТ-10	СЭТ-4TM.03	
Ì	ЗРУ-10 кВ №1,	Кл.т. 0,5	Кл.т. 0,5	Кл.т. 0,2S/0,5	
	яч.65 ф.Ввод 4 10	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-04	ССВ-1Г
	кВ	Рег. № 4346-74	Рег. № 16687-02		Рег. №
13	ПС 110 кВ КС-9	ТЛ-10У3-40	НАМИТ-10	СЭТ-4TM.03	58301-14;
	ЗРУ-10 кВ №2,	Кл.т. 0,5	Кл.т. 0,5	Кл.т. 0,2S/0,5	Сервер БД
	яч.33 ф.Ввод 5 10	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-04	
	кВ	Рег. № 4346-74	Рег. № 16687-02		
14	ПС 110 кВ КС-9	ТЛ-10У3-40	НАМИТ-10	СЭТ-4TM.03	
	ЗРУ-10 кВ №2,	Кл.т. 0,5	Кл.т. 0,5	Кл.т. 0,2S/0,5	
	яч.14 ф.Ввод 6 10	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-04	
	кВ	Рег. № 4346-74	Рег. № 16687-02		
15	ПС 110 кВ КС-9	ТЛ-10У3-40	НАМИТ-10	СЭТ-4TM.03	
	3РУ-10 кВ №2,	Кл.т. 0,5	Кл.т. 0,5	Кл.т. 0,2S/0,5	
	яч.22 ф.Ввод 7 10	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-04	
	кВ	Рег. № 4346-74	Рег. № 16687-02		
16	ПС 110 кВ КС-9	ТЛ-10У3-40	НАМИ-10	СЭТ-4TM.03	
	ЗРУ-10 кВ №2, яч.5	Кл.т. 0,5	Кл.т. 0,2	Кл.т. 0,2S/0,5	
	ф.Ввод 8 10 кВ	$K_{TT} = 3000/5$	$K_{TH} = 10000/100$	Рег. № 27524-04	
		Рег. № 4346-74	Рег. № 11094-87		

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик.
- 2. Допускается замена устройства синхронизации времени на аналогичные утвержденных типов. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Метрологические характеристики ИК в нормальных условиях применения

ИК №№	202.42	$I_5 \le I_{изм} \le I_{20}$		$I_{20} \le I_{изм} < I_{100}$		$I_{100} \le I_{изм} \le I_{120}$	
ALK MANA	cos φ	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ %
1, 2, 3, 4, 5, 7, 8, 9, 16	0,50	±5,3	±2,6	±2,7	±1,4	±1,9	±1,1
	0,80	±2,8	±4,3	±1,5	±2,3	±1,1	±1,6
	0,87	±2,4	±5,4	±1,3	±2,8	±0,9	±2,0
	1,00	±1,7	-	±0,9	-	$\pm 0,7$	-
6, 10, 11, 12, 13, 14, 13	5 0,50	±5,4	±2,7	±2,9	±1,5	±2,2	±1,2
	0,80	±2,9	±4,4	±1,6	±2,4	±1,2	±1,9
	0,87	±2,5	±5,5	±1,4	±3,0	±1,1	±2,2
	1,00	±1,8	-	±1,1	-	±0,9	-

Таблица 4 – Метрологические характеристики ИК в рабочих условиях применения

ИК №№	223 (2	$I_5 \le I_{M3M} < I_{20}$		$I_{20} \le I_{\text{изм}} < I_{100}$		$I_{100} \le I_{изм} \le I_{120}$	
AUX 145145	cos φ	$\delta_{\mathrm{W}}{}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %
1, 2, 3, 4, 5, 7, 8, 9, 16	0,50	±5,3	±2,9	±2,8	±2,0	±2,0	±1,7
	0,80	±2,9	±4,6	±1,6	±2,6	±1,2	±2,1
	0,87	±2,5	±5,5	±1,4	±3,1	±1,1	±2,4
	1,00	±1,7	-	±1,0	-	±0,8	-
6, 10, 11, 12, 13, 14, 15	0,50	±5,4	±3,0	±3,0	±2,0	±2,3	±1,8
	0,80	±2,9	±4,6	±1,7	±2,8	±1,4	±2,3
	0,87	±2,6	±5,6	±1,5	±3,3	±1,2	±2,6
	1,00	±1,8	-	±1,1	-	±0,9	-

Пределы допускаемого значения поправки часов, входящих в СОЕВ, относительно шкалы времени UTC(SU) ± 5 с

Примечание:

 I_5 — сила тока 5% относительно номинального тока TT;

 I_{20} – сила тока 20% относительно номинального тока TT;

 I_{100} — сила тока 100% относительно номинального тока TT;

 I_{120} — сила тока 120% относительно номинального тока TT;

 $I_{\mbox{\tiny ИЗМ}}$ —силы тока при измерениях активной и реактивной электрической энергии относительно номинального тока TT;

 $\delta_{Wo}{}^{A}$ — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии;

 δ_{Wo}^{P} — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии;

 $\delta_{W}{}^{A}$ — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии в рабочих условиях применения;

 δ_W^P – доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии в рабочих условиях применения.

Таблица 5 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество измерительных каналов	16
Нормальные условия:	
 сила тока, % от I_{ном} 	от 5 до 120
 напряжение, % от U_{ном} 	от 99 до 101
 коэффициент мощности соѕ ф 	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха для счетчиков, °С	от +21 до +25
Рабочие условия эксплуатации:	
допускаемые значения неинформативных параметров:	
 сила тока, % от I_{ном} 	от 5 до 120
– напряжение, % от U _{ном}	от 90 до 110
 коэффициент мощности соѕ ф 	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха, °С:	
- для TT и TH	от -40 до +40
- для счетчиков	от 0 до +40
- для сервера	от +15 до +25
Надежность применяемых в АИИС КУЭ компонентов	
Счетчики СЭТ-4ТМ.03М:	165000
 среднее время наработки на отказ, ч, не менее 	165000
Счетчики СЭТ-4ТМ.03:	00000
 среднее время наработки на отказ, ч, не менее 	90000
CCB-1Γ:	22000
 среднее время наработки на отказ, ч, не менее 	22000
Сервер:	40000
 среднее время наработки на отказ, ч, не менее 	10000
Глубина хранения информации Счетчики:	
 тридцатиминутный профиль нагрузки в двух направлениях, 	100
сут, не менее Сервер ИВК:	100
сервер изк.хранение результатов измерений и информации состояний	
- хранение результатов измерении и информации состоянии средств измерений, лет, не менее	3,5
Hawayyaan ay ayanayyy y nayyayyy	, , , , , , , , , , , , , , , , , , ,

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
 - резервный сервер с установленным специализированным ПО;
- резервирование каналов связи между уровнями ИИК и ИВК и между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

Ведение журналов событий:

- счётчика, с фиксированием событий:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- ИВК, с фиксированием событий:
 - даты начала регистрации измерений;
 - перерывы электропитания;
 - программные и аппаратные перезапуски;
 - установка и корректировка времени;

- переход на летнее/зимнее время;
- нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита информации на программном уровне:
- результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на Сервер БД.

Знак утверждения типа

наносится типографским способом на титульный лист формуляра АУВП.411711.046, АУВП.411711.043.ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Сургут» Южно-Балыкское ЛПУ МГ КС-5 «Южно-Балыкская», Тобольское ЛПУ МГ КС-9 «Тобольская». Формуляр».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Трансформаторы тока	ТЛ-10У3-40	48
Трансформаторы напряжения	НАМИТ-10	7
Трансформаторы напряжения	НАМИ-10	9
Счетчики	СЭТ-4TM.03	13
Счетчики	СЭТ-4TM.03M	3
ПО ИВК	АльфаЦЕНТР	1
Сервер синхронизации времени	CCB-1Γ	1
Формуляр	АУВП.411711.046,	1
	АУВП.411711.043.ФО	

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Сургут» Южно-Балыкское ЛПУ МГ КС-5 «Южно-Балыкская», Тобольское ЛПУ МГ КС-9 «Тобольская»». Методика измерений аттестована Западно-Сибирским филиалом ФГУП «ВНИИФТРИ», уникальный номер записи в реестре аккредитованных лиц № RA.RU.311735.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения;

ГОСТ 22261-94 Межгосударственный стандарт. Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ 34.601-90 Межгосударственный стандарт. Автоматизированные системы. Стадии создания.

Правообладатель

Инженерно-технический центр Общества с ограниченной ответственностью «Газпром энерго» (Инженерно-технический центр ООО «Газпром энерго»)

ИНН 7736186950

Юридический адрес: 460028, Оренбургская обл., г.о. город Оренбург, г Оренбург,

ул Терешковой, двлд. 295 Телефон: +7 (3532) 687-126 Факс: +7 (3532) 687-127

E-mail: info@of.energo.gazprom.ru

Изготовитель

Инженерно-технический центр Общества с ограниченной ответственностью «Газпром энерго» (Инженерно-технический центр ООО «Газпром энерго»)

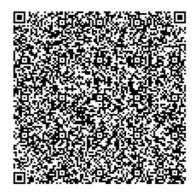
ИНН 7736186950

Адрес: 460028, Оренбургская обл., г.о. город Оренбург, г Оренбург, ул Терешковой,

двлд. 295

Телефон: +7 (3532) 687-126 Факс: +7 (3532) 687-127

E-mail: info@of.energo.gazprom.ru


Испытательный центр

Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ»)

Адрес: 630004, г. Новосибирск, пр-кт Димитрова, д. 4 Телефон (факс): +7 (383) 210-08-14, +7 (383) 210-13-60

E-mail: director@sniim.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.310556.

