УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «07» февраля 2024 г. № 327

Лист № 1 Всего листов 8

Регистрационный № 91272-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки поверочные STEP

Назначение средства измерений

Установки поверочные STEP (далее — установки) предназначены для измерений, воспроизведения, хранения и передачи единиц массы жидкости в потоке и/или объема жидкости в потоке, массового и/или объемного расхода жидкости при проведении исследований, испытаний, поверки, калибровки и других работ по определению метрологических характеристик средств измерений и эталонов единиц массы жидкости в потоке и/или объема жидкости в потоке, массового и/или объемного расходов жидкости.

Описание средства измерений

Принцип действия установок основан на воспроизведении единиц массы и/или объема жидкости в потоке, массового и/или объемного расходов жидкости, создаваемых при помощи системы создания и стабилизации расхода жидкости, системы регулирования расхода жидкости, средств измерений температуры и избыточного давления жидкости, автоматизированной системы измерений, управления и контроля, и измерении расхода и количества жидкости в потоке средствами измерений.

Установки состоят из средств измерений массы и/или объема жидкости в потоке, массового и/или объемного расходов жидкости, температуры и избыточного давления жидкости, системы хранения и подготовки жидкости, системы создания и стабилизации расхода жидкости, системы регулирования расхода жидкости, одного или нескольких измерительных участков, автоматизированной системы измерений, управления и контроля, трубной обвязки с запорно-регулирующей арматурой. Так же по отдельному заказу установки могут быть укомплектованы системой подогрева (охлаждения) и поддержания заданной температуры.

В качестве средств измерений массы жидкости в потоке, и/или объема жидкости в потоке, и/или массового расхода жидкости и/или объемного расхода жидкости в составе установок применяются весовые устройства производства фирмы Metrica Engineering OÜ и ООО «Термотроник»; расходомеры массовые КРОМАСС-V (регистрационный номер ЭМИС-МАСС 80336-20), счетчики-расходомеры массовые кориолисовые 260 (регистрационный номер 77657-20), счетчики-расходомеры массовые (регистрационный номер 75514-19), счетчики-расходомеры массовые МИР (регистрационный номер 68584-17), расходомеры массовые Promass (регистрационный номер 68358-17), расходомеры электромагнитные Promag (регистрационный номер 61467-15), расходомерыэлектромагнитные OPTIFLUX (регистрационный номер расходомеры/счётчики производства ООО «Термотроник».

В качестве средств измерений температуры жидкости в составе установок применяются термопреобразователи сопротивления ТС-Б (регистрационный номер 72995-20), термопреобразователи сопротивления 214С (регистрационный номер 84306-21).

В качестве средств измерений избыточного давления жидкости в составе установок применяются датчики давления МИДА-15 (регистрационный номер 50730-17), датчики давления серии РТЕ5000С (регистрационный номер 77462-20).

По отдельному заказу в качестве средств измерений параметров окружающей среды в составе установок применяются измерители температуры и влажности ИВТМ-7 (регистрационный номер 71394-18).

Поверяемое средство измерений устанавливается в измерительный участок установки, состоящий из зажимного устройства, запорной арматуры, средств измерений избыточного давления и температуры жидкости. Жидкость посредством систем создания и стабилизации расхода жидкости и регулирования расхода жидкости из системы хранения и подготовки жидкости подается в гидравлический тракт рабочего контура установки и проходит через поверяемое средство измерений. Далее, в зависимости от метода измерений, жидкость направляется через расходомеры установки (при их наличии) в систему хранения и подготовки жидкости или через устройство переключения потока весовое устройство (при на его Автоматизированная система измерений, управления и контроля управляет работой установки, собирает, обрабатывает и сравнивает значения, полученные по показаниям поверяемых средств измерений и средств измерений установки.

Установки имеют различные исполнения, отличающиеся составом средств измерений, индексами точности, диапазонами расходов.

Исполнения установок обозначаются следующим образом:

STEP	-X	-x/	x/x	-20x	-x/x	-X	-x/	x/x
1	2	3	4	5	6	7	8	9

- 1 Обозначение типа
- 2-MT- объемный и массовый метод с весами, T- объемный и массовый метод без весов, V- объёмный метод без весов.
- 3 наибольший номинальный диаметр СИ, DN
- 4 Наибольший воспроизводимый массовый/объемный расход, т/ч (м 3 /ч). Если значения массового и объёмного расхода числено равны, указывается одно значение
- 5-C с системой подогрева (охлаждения) и поддержания заданной температуры (при наличии), X- при отсутствии
- 6 индекс точности установки при применении весовых устройств/расходомеров:
- 1, 2, 3 (в соответствии с таблицей 2). При отсутствии в составе установки весовых устройств, указывают «0» в первой позиции
- 7-1 эталонные расходомеры установки массовые, 2- эталонные расходомеры установки электромагнитные
 - 8 наименьший номинальный диаметр СИ, DN
- 9 Наименьший воспроизводимый массовый/объемный расход, т/ч (м³/ч). Если значения массового и объёмного расхода числено равны, указывается одно значение

Общий вид установок представлен на рисунке 1. Цвет и взаимное расположение элементов конструкции могут отличаться согласно конструкторской документацией.

Рисунок 1 – Общий вид установок

Пломбировка установок осуществляется с помощью свинцовой (пластмассовой) пломбы и проволоки, которой пломбируются фланцевые соединения расходомеров установки (при их наличии), с нанесением знака поверки на пломбу. При отсутствии расходомеров в составе установки пломбирование установок не предусмотрено.

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки приведены на рисунке 2.

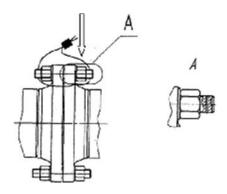


Рисунок 2 — Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки

Заводской номер установок наносится в цифровом формате на маркировочную табличку, закрепленную на одной из металлоконструкций установки в рабочей зоне оператора электрохимическим или лазерным способом.

Обозначения мест нанесения знака утверждения типа и заводского номера представлены на рисунке 3.

Установка поверочная STEP			
Исполнение:			
Заводской номер:			
Год изготовления:			
Изготовитель:			

Рисунок 3 – Обозначения мест нанесения знака утверждения типа и заводского номера

Программное обеспечение

Программное обеспечение установок автономное.

Функции программного обеспечения: сбор, отображение и регистрирование информации со средств измерений в ходе проведения калибровок и поверок, выполнение математической обработки результатов измерений, хранение и редактирование базы данных с параметрами поверяемых средств измерений и средств измерений установки, генерация отчетов о результатах проведения калибровок и поверок средств измерений, управление и контроль состояния исполнительных механизмов установки, управление устройствами систем хранения и подготовки жидкости, создания и стабилизации расхода жидкости, регулирования расхода жидкости, управление автоматизированной системой измерений, управления и контроля, обеспечение диагностики.

В программном обеспечении предусмотрена многоступенчатая защита от несанкционированного доступа к текущим данным и параметрам настройки (индивидуальные пароли и программные средства для защиты файлов и баз данных, предупредительные сообщения об испорченной или скорректированной информации, ведение журналов действий пользователя).

Уровень защиты программного обеспечения от преднамеренных и непреднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.077-2014.

Метрологические характеристики средства измерений нормированы с учетом влияния программного обеспечения.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	StepWin7		
Номер версии (идентификационный номер) ПО	не ниже $3.0.X.X^{1)}$		
Цифровой идентификатор ПО	_		
$^{-1)}$ X – относится к метрологически незначимой части ПО			

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 — метрологические характеристики		n		
Наименование характеристики	Значение			
1	2			
Диапазон измерений (воспроизведения) массового и				
объемного расходов жидкости при применении в				
качестве средств измерений весовых устройств ¹⁾ , т/ч				
$\left(\mathrm{M}^{3}/\mathrm{q}\right)$	от 0,001 до 1500			
Диапазон измерений (воспроизведения) массового и				
объемного расходов жидкости при применении в				
качестве средств измерений расходомеров массовых 1, т/ч				
(M^3/q)	от 0,001 до 1500			
Диапазон измерений (воспроизведения) объемного				
расхода жидкости при применении в качестве средств				
измерений расходомеров объемных 1 , м 3 /ч	от 0,001 до 1500			
Индекс точности установки	1	2 3		
Пределы допускаемой относительной погрешности	*			
(доверительные границы суммарной погрешности)				
установок при измерении (воспроизведении единиц)				
			_	
массы жидкости в потоке и массового расхода жидкости	от ±0,04	om 10.06		
по измерительному каналу частотно-импульсных	· · · · · · · · · · · · · · · · · · ·	ot ± 0.06		
сигналов при применении весовых устройств 1), %	до ±0,05	до ±0,10		
Пределы допускаемой относительной погрешности				
(доверительные границы суммарной погрешности)				
установок при измерении (воспроизведении единиц)				
объема жидкости в потоке и объемного расхода			_	
жидкости по измерительному каналу частотно-				
импульсных сигналов при применении весовых	от ± 0.045	от ±0,06		
устройств ¹⁾ , %	до ±0,055	до ±0,10		
Пределы допускаемой относительной погрешности				
установок (доверительные границы суммарной				
погрешности) при измерении (воспроизведении единиц)				
массы и объема жидкости в потоке, массового и	_	_		
объемного расходов жидкости по измерительному				
каналу частотно-импульсных сигналов при применении			от ±0,10	
расходомеров массовых 1), %			до ±0,15	
Пределы допускаемой относительной погрешности				
установок (доверительные границы суммарной				
погрешности) при измерении (воспроизведении единиц)				
массы и объема жидкости в потоке, массового и	_	_		
объемного расходов жидкости по измерительному				
каналу аналоговых сигналов при применении			от ±0,15	
расходомеров массовых 1)2), %			до ±0,20	
· · · · · · · · · · · · · · · · · · ·	1	t		

1		2	
Пределы допускаемой относительной погрешности			
(доверительные границы суммарной погрешности)			
установок при измерении (воспроизведении единиц)			
объема жидкости в потоке и объемного расхода	_	_	
жидкости по измерительному каналу частотно-			
импульсных сигналов при применении расходомеров			от ±0,2
объемных ¹⁾ , %			до ±0,3
Пределы допускаемой относительной погрешности			
(доверительные границы суммарной погрешности)			
установок при измерении (воспроизведении единиц)			
объема жидкости в потоке и объемного расхода	_	_	
жидкости по измерительному каналу аналоговых			от ±0,25
сигналов при применении расходомеров объемных 1)2), %			до ±0,30

^{1) –} конкретное значение указывается в эксплуатационных документах на установку

Таблица 3 – Основные технические характеристики

тионици з основные техни неские хириктеристики			
Наименование характеристики	Значение		
Номинальный диаметр поверяемых средств измерений ¹⁾	от DN 2 до DN 400		
Количество одновременно поверяемых средств			
1 измерений 1 , шт	от 1 до 40		
Измеряемая среда ¹⁾	жидкость (вода питьевая)		
Температура измеряемой среды ¹⁾²⁾ , °С	от +10 до +30		
Избыточное давление измеряемой среды ¹⁾ , МПа	от 0,1 до 1		
Параметры электрического питания:			
 напряжение переменного тока, В 	380±38/220±22		
– частота переменного тока, Гц	50±1		
Условия эксплуатации 1 :			
– температура окружающей среды ³⁾ , °C	от +10 до +30		
– относительная влажность, %	от 30 до 80		
– атмосферное давление, кПа	от 84 до 107		
Средний срок службы установки, лет	15		
Средняя наработка на отказ, ч	20000		
4.5			

^{1) –} конкретное значение указывается в эксплуатационных документах на установку

Знак утверждения типа

наносится на маркировочную табличку, закрепленную на одной из металлоконструкций установки в рабочей зоне оператора электрохимическим или лазерным способом и в верхней части по центру титульных листов руководства по эксплуатации и паспорта типографским способом.

 $^{^{2)}}$ – в диапазоне свыше 20 % от верхнего значения диапазона измерительного канала аналоговых сигналов

 $^{^{2)}}$ – для установок с индексом точности 1 при применении весовых устройств температура измеряемой среды (жидкости) от +15 °C до +25 °C

 $^{^{3)}}$ – для установок с индексом точности 1 при применении весовых устройств температура окружающей среды от +15 °C до +25 °C

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество	
Установка поверочная	STEP	1 шт.	
Руководство по эксплуатации	_	1 экз.	
Паспорт	_	1 экз.	

Сведения о методиках (методах) измерений

приведены в разделе 2 «Назначение и область применения» руководства по эксплуатации.

Нормативные документы, устанавливающие требования к средству измерений

Приказ Росстандарта от 26 сентября 2022 г. № 2356 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости»;

СтП-12418704-KS-1-2022 «Установки поверочные STEP. Стандарт предприятия»; ТУ 26.51.52-12418704-19852941-2022 «Установки поверочные STEP. Технические условия».

Правообладатель

Фирма Metrica Engineering OÜ, Эстония

Адрес: 10317, г. Таллинн, ул. Нису д. 25, помещ. 23

Телефон: +372 502-51-90 E-mail: vtammi@hot.ee

Изготовители

Общество с ограниченной ответственностью «Термотроник» (ООО «Термотроник»)

ИНН 7811667503

Юридический адрес: 191024, г. Санкт-Петербург, ул. Тележная, д. 3, лит. А, помещ. 3-Н, оф. 5

Адрес: 191024, г. Санкт-Петербург, ул. Тележная, д. 3, лит. А, помещ. 211/2

Телефон: +7 (812) 326-10-50 E-mail: zakaz@termotronic.ru

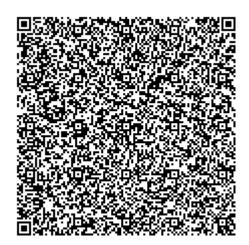
Фирма Metrica Engineering OÜ, Эстония

Адрес: 10317, г. Таллинн, ул. Нису д. 25, помещ. 23

Телефон: +372 502-51-90 E-mail: vtammi@hot.ee

Испытательный центр

Всероссийский научно-исследовательский институт расходометрии — филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии имени Д.И.Менделеева» (ВНИИР — филиал ФГУП «ВНИИМ им. Д.И.Менделеева»)


Юридический адрес: 190005, г. Санкт-Петербург, Московский пр-кт, д. 19

Фактический адрес: 420088, Республика Татарстан, г. Казань, ул. 2-я Азинская, д. 7 «а»

Телефон: +7(843) 272-70-62, факс: +7(843) 272-00-32

Web-сайт: www.vniir.org E-mail: office@vniir.org

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.310592.

