УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «16» апреля 2024 г. № 1023

Лист № 1 Всего листов 9

Регистрационный № 91896-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Энергоконсалт» (6 очередь)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Энергоконсалт» (6 очередь) (далее — АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее — ИИК), которые включают в себя трансформаторы тока (далее — ТТ), трансформаторы напряжения (далее — ТН) и счетчики активной и реактивной электроэнергии (далее — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень — информационно-вычислительный комплекс (далее — ИВК) ООО «Энергоконсалт», включающий в себя каналообразующую аппаратуру, сервер баз данных (далее — БД) АИИС КУЭ, автоматизированные рабочие места персонала (APM), устройство синхронизации времени УСВ-2 (далее — УСВ) и программное обеспечение (далее — ПО) ПК «Энергосфера».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС».

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов.

Измерительная информация записывается в базу данных ИВК ООО «Энергоконсалт» в автоматическом режиме, один раз в сутки сервер автоматически формирует файл отчета с результатами измерений в виде xml-файлов установленных форматов. Файл с результатами измерений по электронной почте автоматически направляется на APM энергосбытовой организации-субъекта Оптового рынка электрической энергии и мощности (далее — ОРЭМ). Передача информации от APM энергосбытовой организации-субъекта ОРЭМ и при необходимости смежным субъектам ОРЭМ, в филиал АО «СО ЕЭС» осуществляется по каналу связи сети Internet в соответствии с действующими требованиями к предоставлению информации.

АИИС КУЭ имеет возможность принимать измерительную информацию от других смежных АИИС КУЭ, зарегистрированных в Федеральном информационном фонде по обеспечению единства измерений.

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

При необходимости передачи с использованием ЭЦП конфигурационные возможности ИВК позволяют осуществлять автоматическую передачу xml-файлов установленных форматов с использованием ЭЦП непосредственно в адрес АО «АТС» и (или) иных заинтересованных организаций.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ на основе приемника сигналов точного времени от навигационных систем ГЛОНАСС/GPS. УСВ обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени приемника более чем на ± 1 с. Часы счетчиков синхронизируются от часов сервера БД один раз в сутки, коррекция часов счетчиков проводится при расхождении часов счетчика и сервера БД более чем на ± 1 с.

Журналы событий счетчиков и сервера БД отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Нанесение заводского номера на конструкцию средства измерений не предусмотрено. Заводской номер указывается в паспорте-формуляре на АИИС КУЭ типографическим способом. Формат, способ и места нанесения заводских номеров измерительных компонентов, входящих в состав ИИК ТИ АИИС КУ приведены в паспорте-формуляре на АИИС КУЭ.

Заводской номер АИИС КУЭ: 6.

Программное обеспечение

В АИИС КУЭ используется ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера».

Таблица 1 – Илентификационные данные ПО

тиолици т тідентификационные данные то			
Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПК «Энергосфера»		
	Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

 Π К «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 Состав ИК АИИС КУЭ и их основные метрологические характеристики

×		Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК	Наименование ИК	TT	ТН	Счётчик	УСВ/ Сервер	Вид электро- энергии	Основная погрешность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	TΠ 10/0,4 κB №1,	TTE-125 Кл. т. 0,5	-	Меркурий 230 ART- 03 PQCSIDN	УСВ-2 Рег. № 41681-10 / Dell R330 - Dell R340	активная	±1,0	±3,2
1 РУ-0,4 кВ, 1С-0, кВ, ввод-1		Ktt 1500/5 Per. № 73808-19		Кл. т. 0,5S/1,0 Рег. № 23345-07		реактивная	±2,4	±5,6
2	ТП 10/0,4 кВ №1, РУ-0,4 кВ, 2С-0,4 кВ, ввод-2	ТТЕ-125 Кл. т. 0,5	-	Меркурий 230 ART- 03 PQCSIDN		активная	±1,0	±3,2
2		Ктт 1500/5 Рег. № 73808-19		Кл. т. 0,5S/1,0 Рег. № 23345-07		реактивная	±2,4	±5,6
3	ТП 10/0,4 кВ №2,	ТТЕ-125 Кл. т. 0,5	-	Меркурий 234 ARTM-03 PBR.G		активная	±1,0	±3,2
	РУ-0,4 кВ, 1С-0,4 кВ, ввод-1	Ktt 1500/5 Per. № 73808-19		Кл. т. 0,5S/1,0 Рег. № 75755-19		реактивная	±2,4	±5,6
	ТП 10/0,4 кВ №2, РУ-0,4 кВ, 2С-0,4 кВ, ввод-2	TTE-125 Кл. т. 0,5	-	Меркурий 234 ARTM-03 PBR.G		активная	±1,0	±3,2
		Ктт 1500/5 Рег. №73808-19		Кл. т. 0,5S/1,0 Рег. № 75755-19		реактивная	±2,4	±5,6

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
	ТП 10/0,4 кВ №3, РУ-0,4 кВ, 1С-0,4	ТТИ-125 Кл. т. 0,5	-	Меркурий 230 ART- 03 PQRSIDN	УСВ-2 Рег. № 41681-10 / Dell R330 - Dell R340	активная	±1,0	±3,2
3	кВ, ввод-1	Ktt 3000/5 Per. № 28139-04		Кл. т. 0,5S/1,0 Рег. № 80590-20		реактивная	±2,4	±5,6
6	6 ТП 10/0,4 кВ №3, РУ-0,4 кВ, 2С-0,4 кВ, ввод-2	ТТИ-125 Кл. т. 0,5		Меркурий 230 ART- 03 PQRSIDN		активная	±1,0	±3,2
0		Ктт 3000/5 Рег. № 28139-04	-	Кл. т. 0,5S/1,0 Рег. № 80590-20		реактивная	±2,4	±5,6
7	7 ПП 10/0,4 кВ №4, РУ-0,4 кВ, 1С-0,4 кВ, ввод-1 ТП 10/0,4 кВ №4, РУ-0,4 кВ, 2С-0,4 кВ, ввод-2	ТТИ-125 Кл. т. 0,5		Меркурий 230 ART- 03 PQRSIDN		активная	±1,0	±3,2
/		Ktt 4000/5 Per. № 28139-04	-	Кл. т. 0,5S/1,0 Рег. № 80590-20		реактивная	±2,4	±5,6
o		ТТИ-125 Кл. т. 0,5		Меркурий 230 ART- 03 PQRSIDN		активная	±1,0	±3,2
0		Ktt 4000/5 Per. № 28139-04	-	Кл. т. 0,5S/1,0 Рег. № 80590-20		реактивная	±2,4	±5,6
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с						±5		

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана $\cos \varphi = 0.8$ инд $I=0.05 \cdot I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 8 от 0 °C до плюс 40 °C.
- 4 Допускается замена ТТ и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 5 Допускается замена УСВ на аналогичные утвержденных типов.
- 6 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение		
Количество измерительных каналов	8		
Нормальные условия:			
параметры сети:			
- напряжение, % от U _{ном}	от 99 до 101		
- ток, % от I _{ном}	от 100 до 120		
- частота, Гц	от 49,85 до 50,15		
 коэффициент мощности соѕф 	0,9		
- температура окружающей среды, °С	от +21 до +25		
Условия эксплуатации:			
параметры сети:			
- напряжение, % от Ином	от 90 до 110		
- ток, % от Іном	от 5 до 120		
- коэффициент мощности	от $0,5$ инд до $0,8$ емк		
- частота, Гц	от 49,6 до 50,4		
- температура окружающей среды для ТТ и ТН, °С	от -45 до +55		
- температура окружающей среды в месте расположения			
счетчиков, °С	от -40 до +55		
- температура окружающей среды в месте расположения			
сервера, °С	от +10 до +30		
Надежность применяемых в АИИС КУЭ компонентов:			
Счетчики:			
- среднее время наработки на отказ, ч, не менее	90000		
- среднее время восстановления работоспособности, ч	2		
Сервер:			
- среднее время наработки на отказ, ч, не менее	70000		
- среднее время восстановления работоспособности, ч	1		
Глубина хранения информации			
Счетчики:			
- тридцатиминутный профиль нагрузки в двух направлениях,			
сут, не менее	113		
- при отключении питания, лет, не менее	45		
Сервер:			
- хранение результатов измерений и информации состояний			
средств измерений, лет, не менее	3,5		

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - сервера.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист паспорта-формуляра на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформатор тока	TTE-125	12
Трансформатор тока	ТТИ-125	12
Счётчик электрической энергии многофункциональный	Меркурий 230 ART-03 PQCSIDN	2
Счётчик электрической энергии многофункциональный	Меркурий 234 ARTM-03 PBR.G	2
Счётчик электрической энергии многофункциональный	Меркурий 230 ART-03 PQRSIDN	4
Устройство синхронизации времени	УСВ-2	1
Программное обеспечение	ПК «Энергосфера»	1
Паспорт-Формуляр	72122884.4252103.026- 06.ПС	1
Методика поверки	-	1

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Энергоконсалт» (6 очередь), аттестованном ООО «Спецэнергопроект», г. Москва, уникальный номер записи в реестре аккредитованных лип № RA.RU.312236.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания»;

ГОСТ Р 8.596-2002 ГСИ. «Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Общество с ограниченной ответственностью «ЭНЕРГОКОМПЛЕКС» (ООО «ЭНЕРГОКОМПЛЕКС»)

ИНН 7203394515

Юридический адрес: 625032, г. Тюмень, ул. Баумана, д. 29, оф. 501

Телефон: +7 (916) 703-03-81

Web-сайт: ek72.ru E-mail: info@ek72.ru

Изготовитель

Общество с ограниченной ответственностью «Системы Релейной Защиты» (ООО «Системы Релейной Защиты»)

ИНН 7722722657

Адрес места осуществления деятельности: 140070, Московская обл., п. Томилино, ул. Гаршина, д. 11, а/я 868

Юридический адрес: 111024, г. Москва, вн. тер.г. муниципальный округ Лефортово, ул. Авиамоторная, д. 50, стр. 2, помещ. 50/14ч

Телефон: +7 (495) 772-41-56 Факс: +7 (495) 544-59-88 E-mail: info@srza.ru

Испытательный центр


Общество с ограниченной ответственностью «Спецэнергопроект» (ООО «Спецэнергопроект»)

ИНН 7722844084

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, эт. 4, помещ. І, ком. 6, 7

Телефон: +7 (495) 410-28-81 E-mail: info@sepenergo.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312429.

