УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «06» мая 2024 г. № 1141

Лист № 1 Всего листов 8

Регистрационный № 92060-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплекс автоматизированный измерительно-управляющий КИ-ЭБ2-Калининградская ТЭЦ-2

Назначение средства измерений

Комплекс автоматизированный измерительно-управляющий КИ-ЭБ2-Калининградская ТЭЦ-2 (далее - комплекс) предназначен для измерений сигналов силы постоянного электрического тока, сигналов от термоэлектрических преобразователей (термопар) и термопреобразователей сопротивления, вычислений, контроля и хранения измеренных параметров оборудования и энергоносителей (воды, перегретого и насыщенного пара, воздуха, газа, тепловой и электрической энергии), потребляемых или получаемых в процессе работы энергоблока.

Описание средства измерений

Принцип действия комплекса основан на измерении, обработке и индикации информации, поступающей с первичных преобразователей, согласно заложенным алгоритмам.

Комплекс входит в состав автоматизированной системы управления технологическими процессами (далее - АСУТП) энергоблока №2 филиала «Калининградская ТЭЦ-2» АО «Интер РАО - Электрогенерация» и обеспечивает измерение параметров, их визуализацию и хранение полученной измерительной информации, и реализацию алгоритмов управления теплотехнического оборудования энергоблоков, принимая измерительную информацию из систем, работающих в составе оборудования энергоблока, в том числе систем управления тепломеханическим оборудованием (далее - ТМО) паровой турбины (далее –ПТУ), котлов –утилизаторов и общеблочного оборудования.

Комплекс представляет собой совокупность технических и программных средств, в том числе:

- 1. Оборудования и программного обеспечения нижнего уровня, состоящего из:
- программно-технических средств "REGUL RX00" на базе модулей аналогового ввода R500 AI.08.031, R500 AI 08.042 и R500 AI.08.052 (регистрационный № 63776-16), осуществляющих циклический опрос измерительного оборудования, прием и преобразование токовых сигналов от датчиков давления, расхода, механических и электрических измерений, сигналов с датчиков температуры в выходной код и передача их в центральные процессоры комплекса по протоколу «EtherCAT» реализованного с использование стека стандартных промышленных протоколов обмена семейства "Industrial Ethernet";
 - Линий связи, соединяющих измерительные модули с датчиками;
- 2. Оборудования и программного обеспечения среднего, контроллерного уровня, состоящего из:
- Двенадцати дублированных центральных процессоров программно-технических средств "REGUL R500" типа R500 CU.00.051 получающих измерительную информацию от модулей аналогового ввода и обеспечивающего управление оборудованием энергоблока №2 согласно заданным алгоритмам управления;

- 3. Оборудования и программного обеспечения верхнего уровня, состоящего из:
- резервированного сервера, реализованного на серверной аппаратной платформе, на базе программного обеспечения Альфа-платформа, развернутого в операционной системе Linux и предназначенного для контроля и управления оборудованием энергоблока №2, а также обработки и хранения полученной измерительной и расчетной информации;
- девять операторских рабочих (APM оператора), четыре APM инженеров, использующих кроссплатформенное программное обеспечение Альфа-платформа, способное функционировать в операционных системах Linux и реализованных на базе персональных компьютеров, которые получают информацию от резервированного сервера по отказоустойчивой промышленной локальной сети ПТК АСУТП энергоблока №2 Industrial Ethernet и обеспечивают контроль, управление и визуализацию результатов измерений и функционирования оборудования энергоблока №2;
- инженерной станции с предустановленным специальным программным обеспечением, необходимым для выполнения конфигурирование оборудования и программного обеспечения нижнего, среднего и верхнего уровней комплекса.

Комплекс обеспечивает измерение сигналов силы постоянного электрического тока, сигналов от термоэлектрических преобразователей (термопар) и термопреобразователей сопротивления, вычисление, индикацию и автоматическое обновление данных измерений и расчетов на экранах рабочих станций, архивирование и вывод на печать следующих параметров, соответствующих входным аналоговым сигналам, полученным от первичных измерительных преобразователей (не входят в состав комплекса) при ведении технологического процесса энергоблока:

- расхода воды, пара, жидкого топлива, газа м³/ч, т/ч, кг/с;
- давлений воздуха, пара, воды, жидкого топлива, уходящих газов, масла кПа, МПа, Па, бар, мбар, кгс/см², мм.рт.ст;
- температуры уходящих газов, пара, воды, масла, металла, жидкого топлива °C;
 - уровня воды, масла, хеламина (фосфата) мм;
- вибраций подшипников, осевого сдвига, относительного расширения, скорости вращения, мм, мм/с, об/мин;
- электрического тока, напряжения, частоты и мощности, A, B, кB, МВт, Мвар,Гц;
- концентраций O_2 , CO, CO_2 , NOx, Na, SO_2 , CH_4 ,в отходящих газах котла энергоблока, %; ppм, %НКПР;
- концентраций, pH, электропроводность в жидких и паровых средах котла энергоблока, мкг/л, ммоль/л, pH, мкСм/см.

Все электронное оборудование комплекса размещается в специализированных шкафах автоматизации — приборных стойках. Внешний вид шкафов приведен на рисунке 1. Заводской номер комплекса № ИК.3584 наносится типографическим способом на табличку в соответствии с рисунком 2, прикрепленную к лицевой панели шкафа инженерной станции измерительного комплекса, и в формуляр комплекса. Структурная схема комплекса автоматизированного измерительно — управляющего КИ-ЭБ2-Калининградская ТЭЦ-2 приведена на рисунке 3.

Рисунок 1 – Внешний вид контроллерных шкафов

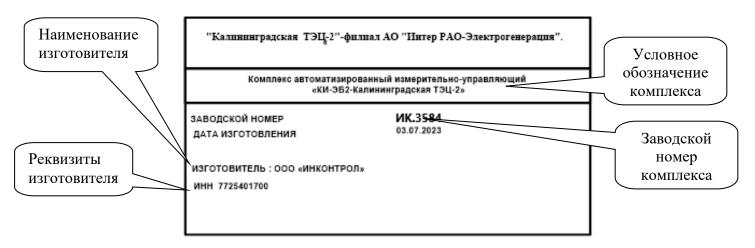


Рисунок 2 – Маркировочная табличка комплекса

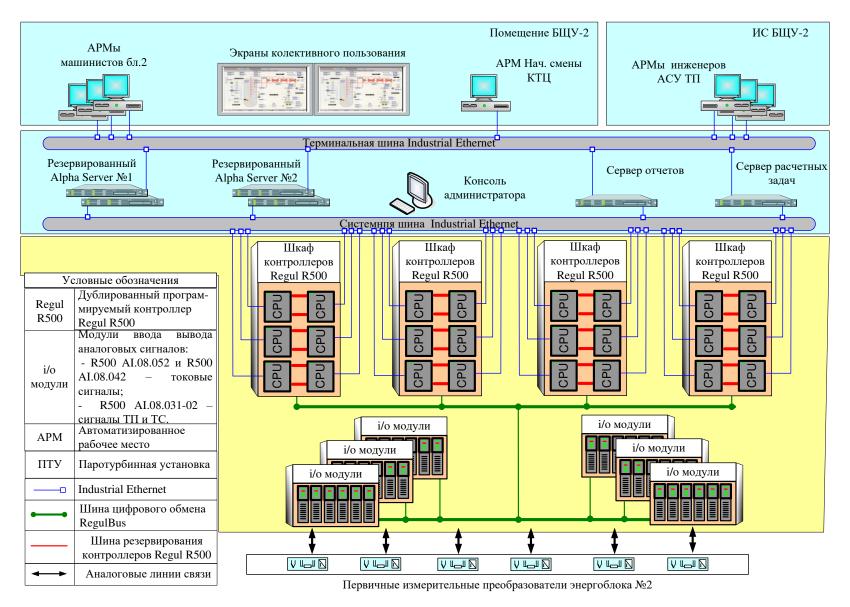


Рисунок 3 - Структурная схема комплекса автоматизированного измерительно-управляющего КИ-ЭБ2-Калининградская ТЭЦ-2

Программное обеспечение

Программное обеспечение (Π O) комплекса функционально разделено на две группы: базовое программное обеспечение ($Б\Pi$ O) измерительных модулей Π TK и специализированное Π O (Π O).

Метрологически значимая часть программного обеспечения находится во встроенном базовом программном обеспечении (далее - БПО) измерительных модулей ПТК, устанавливаемое в энергонезависимую память модулей в производственном цикле на заводе - изготовителе и в процессе эксплуатации изменению не подлежит. Возможности, средства и интерфейсы для изменения БПО отсутствуют.

СПО включает в себя:

- специализированное инженерное программное обеспечение «Epsilon LD», предназначенное для конфигурирования программно-аппаратных средств REGUL нижнего и среднего уровней комплекса;
- специализированное программное обеспечение «Alpha. HMI», предназначенное для конфигурирования программно-аппаратных средств Альфа-платформа верхнего уровня комплекса.

Конфигурация программного проекта АСУТП энергоблока №2 на базе ПТК «REGUL RX00» выполнена под задачи комплекса автоматизированного измерительно-управляющего КИ-ЭБ2-Калининградская ТЭЦ-2.

Защита от несанкционированного изменения алгоритмов измерений, преобразования и вычисления параметров обеспечивается системой электронного паролирования доступа к интерфейсу ПО, параметры настроек измерительных каналов и результатов измерений закрыты персональным паролем.

Уровень защиты ПО системы от преднамеренных и непреднамеренных изменений – «высокий» в соответствии с Р 50.2.077 – 2014.

Таблица 1 – Идентификационные данные ПО

Tuotingu T Tigoninginangioninbio gamibio 110				
Идентификационные данные (признаки)	Значения			
Идентификационное наименование ПО	Epsilon LD	Alpha. HMI		
Номер версии (идентификационный номер) ПО	V1.6.14.0	1.8.x+add19082.b134.r87458		
Алгоритм вычисления цифрового идентификатора		-		

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

	<u>i</u>	
	Наименование	Значение
Диапазон прео	бразования входных сигналов силы постоянного	
тока в значения	технологических параметров (давления, уровня,	
расхода, темпера	атуры, химического анализа, электрических и ме-	от 4 до 20
ханических вели	ичин), работающих от датчиков со стандартным	01 4 до 20
токовым выход	ом, без учета погрешности первичных измери-	
тельных преобра	азователей, мА	
Диапазон прео	бразования входных сигналов напряжения посто-	от 0 до 29,129
янного тока, по	ступающих от термопар типа ХА(К) в значения	(от 0 до 29,129
температуры, мІ	3 (°C)	(01 0 д0 +700)

Продолжение таблицы 2

продолжение таолицы 2	
1	2
Диапазон преобразования входных сигналов сопротивления,	
поступающих от термопреобразователей сопротивления, в значе-	
ния температуры, Ом (°С):	
- для термопреобразователей сопротивления НСХ 100П	от 100,00 до 317,11
	(от 0 до +600)
- для термопреобразователей сопротивления HCX Pt100	от 80,31 до 175,86
	(от -50 до +200)
 для термопреобразователей сопротивления НСХ 50М 	от 50,00 до 82,10
	(от 0 до +150)
Пределы допускаемой погрешности приведенной к верхнему	, , , , , , , , , , , , , , , , , , ,
значению диапазона преобразования входных сигналов силы по-	
стоянного тока в значения технологических параметров, %:	
- расхода прямого измерения, давления, уровня, температу-	
ры, химического анализа, электрических и механических вели-	
чин, работающих от датчиков со стандартным токовым выходом,	
без учета погрешности первичных измерительных преобразова-	
телей	$\pm 0,\!25$
- расхода энергоносителей с помощью стандартных СУ, без	,
учета погрешности первичных измерительных преобразователей:	
- жидкости	$\pm 0,5$
- пара	$\pm 1,0$
Пределы допускаемой абсолютной погрешности преобразова-	
ния сигналов термоЭДС, поступающих от термопар типа ХА(К),	
в значения температуры, без учета погрешности первичных из-	
мерительных преобразователей, °С:	$\pm 2,5$
Пределы допускаемой абсолютной погрешности преобразова-	
ния сигналов сопротивления, поступающих от термопреобразо-	
вателей сопротивления типа ТСП НСХ Рt100, НСХ 100П и НСХ	
50М, в значения температуры, без учета погрешности первичных	
измерительных преобразователей, °С:	± 0.7
Примечания:	

Пределы допускаемой погрешности преобразования сигналов термоЭДС, поступающих от преобразователей термоэлектрических, даны с учетом погрешности компенсации температуры холодного спая

Таблица 3 – Основные технические характеристики

Наименование	Значение
1	2
Количество процессоров R500 CU.00.051 в составе комплекса, шт.	12
Количество измерительных модулей в составе комплекса, шт: - R500 AI.08.031 - R500 AI.08.042 - R500 AI.08.052	123 16 170
Количество измерительных преобразователей, подключаемых на вход одного модуля, шт:	8

Продолжение таблицы 3

1	2
Количество измерительных преобразователей со стандартным токовым	881
выходом на входе ПТК, шт	001
Количество измерительных преобразователей температуры, на входе	754
ПТК, шт	734
Параметры электрического питания:	от 24 до 30
- напряжение постоянного тока, В	01 24 до 30
	непрерывный,
Режим работы	в условиях
	помещения
Условия эксплуатации:	
- температура окружающей среды, °С:	
- электронная аппаратура и вычислительная техника	от 0 до +40
- относительная влажность при температуре плюс 25 °C, %	от 30 до 80
- атмосферное давление, кПа	от 80 до 108
Средний срок службы, лет	15

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество, шт./экз.
Комплекс автоматизированный измерительно- управляющий	КИ-ЭБ2-Калининградская ТЭЦ-2	1
Руководство по эксплуатации. "Комплекс автоматизированный измерительно- управляющий КИ-ЭБ2-Калининградская ТЭЦ-2, часть 1."Инструкция по эксплуатации APM оператора"	ИК.3584-АТХ1.РЭ 01	1
Руководство по эксплуатации. "Комплекс автоматизированный измерительно- управляющий КИ-ЭБ2-Калининградская ТЭЦ-2, часть 2. "Техническое описание ПТК "Regul R500"	ИК.3584-АТХ1.РЭ 02	1
Формуляр	ИК.3584-АТХ1.ФО	1

Знак утверждения типа

наносится типографским способом на титульные листы эксплуатационной документации.

Сведения о методиках (методах) измерений

приведены в пункте «Интерфейс пользователя» руководства по эксплуатации ИК.3584-ATX1.РЭ 01.

Нормативные документы, устанавливающие требования к комплексу автоматизированному измерительно-управляющему КИ-ЭБ2-Калининградская ТЭП-2

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения;

ГОСТ 6651–2009 «ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний»;

ГОСТ Р 8.585–2001 «ГСИ. Термопары. Номинальные статические характеристики преобразования»;

Приказ Росстандарта от 1 октября 2018 г. № 2091 «Об утверждении государственной поверочной схемы для средств измерений силы постоянного тока в диапазоне от $1 \cdot 10^{-16}$ до 100 А»;

Приказ Росстандарта от 28 июля 2023 г. № 1520 «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы»;

Приказ Росстандарта от 30 декабря 2019 г. № 3456 «Об утверждении государственной поверочной схемы для средств измерений электрического сопротивления постоянного и переменного тока».

Правообладатель

Общество с ограниченной ответственностью «ИНКОНТРОЛ» (ООО «ИНКОНТРОЛ»)

ЙНН 7725401700

Адрес юридического лица: 115280, г. Москва, ул. Ленинская Слобода, д. 23,

стр. 2, оф. 5-7

Телефон: (495)481-33-10 E-mail: office@inctrl.ru

Изготовитель

Общество с ограниченной ответственностью «ИНКОНТРОЛ»

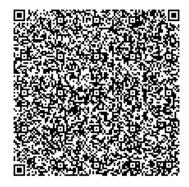
(ООО «ИНКОНТРОЛ»)

ИНН 7725401700

Адрес: 115280, г. Москва, ул. Ленинская Слобода, д. 23, стр. 2, оф. 5-7

Телефон: (495)481-33-10 E-mail: office@inctrl.ru

Испытательный центр


Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, г. Москва, вн. тер. г. муниципальный округ Очаково-Матвеевское,

ул. Озерная, д. 46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

