# **УТВЕРЖДЕНО**

приказом Федерального агентства по техническому регулированию и метрологии от «07» мая 2024 г. № 1155

Лист № 1 Всего листов 8

Регистрационный № 92076-24

# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «МСК Энерго» в части электроснабжения ООО «Калькон Калуга»

### Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «МСК Энерго» в части электроснабжения ООО «Калькон Калуга» (далее — АИИС КУЭ) предназначена для измерений активной и реактивной электрической энергии и мощности, потребленной (переданной) за установленные интервалы времени отдельными технологическими объектами, сбора, обработки, хранения информации, формирования отчетных документов и передачи полученной информации.

### Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень — информационно-вычислительный комплекс (ИВК), включающий в себя сервер ООО «МСК Энерго» с программным обеспечением (ПО) «АльфаЦЕНТР», сервер ОАО «Бонолит-Строительные решения» с ПО АКУ «Энергосистема», устройства синхронизации времени (УСВ), автоматизированные рабочие места энергосбытовой организации (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на сервер ОАО «Бонолит-Строительные решения», где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

От сервера ОАО «Бонолит-Строительные решения» информация в виде xml-макетов установленных форматов передается на сервер ООО «МСК Энерго».

Передача информации от сервера ООО «МСК Энерго» в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта ОРЭ, в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хml-файлов установленных форматов в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы серверов и УСВ. УСВ обеспечивают передачу шкалы времени, синхронизированной по сигналам глобальных навигационных спутниковых систем с национальной шкалой координированного времени РФ UTC(SU).

Сравнение показаний часов сервера ООО «МСК Энерго» с соответствующим УСВ осуществляется во время сеанса связи с УСВ. Корректировка часов сервера производится при расхождении показаний часов сервера с УСВ более  $\pm 1$  с.

Сравнение показаний часов сервера ОАО «Бонолит-Строительные решения» с соответствующим УСВ осуществляется во время сеанса связи с УСВ. Корректировка часов сервера производится независимо от величины расхождений.

Сравнение показаний часов счетчиков с часами сервера ОАО «Бонолит-Строительные решения» осуществляется с заданным интервалом времени, но не реже одного раза в сутки, корректировка часов счетчика производится при расхождении показаний часов счетчика с часами сервера более  $\pm 1$  с.

Журналы событий счетчиков и серверов отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Нанесение знака поверки на средство измерений не предусмотрено. Маркировка заводского номера АИИС КУЭ ООО «МСК Энерго» в части электроснабжения ООО «Калькон Калуга» наносится на этикетку, расположенную на тыльной стороне сервера, типографским способом. Дополнительно заводской номер 286.10 указывается в формуляре.

#### Программное обеспечение

В АИИС КУЭ используется программное обеспечение ПО «АльфаЦЕНТР» и ПО АКУ «Энергосистема».

ПО «АльфаЦЕНТР» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Метрологически значимая часть ПО и данные достаточно защищены с помощью специальных средств защиты от преднамеренных изменений. Уровень защиты ПО «АльфаЦЕНТР» от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО «АльфаЦЕНТР» указана в таблице 1.

ПО АКУ «Энергосистема» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО АКУ «Энергосистема».

Уровень защиты ПО АКУ «Энергосистема» от непреднамеренных и преднамеренных изменений — «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО АКУ «Энергосистема» указана в таблице 1.

Таблица 1 – Идентификационные данные ПО

| Tuotingu T Tigentinginaanioniibie guinibie Tio                     |                                  |  |  |  |
|--------------------------------------------------------------------|----------------------------------|--|--|--|
| Идентификационные данные (признаки)                                | Значение                         |  |  |  |
| ПО «АльфаЦЕНТР» (Сервер ООО «МСК Энерго»)                          |                                  |  |  |  |
| Идентификационное наименование ПО                                  | ac_metrology.dll                 |  |  |  |
| Номер версии (идентификационный номер) ПО                          | не ниже 12.1                     |  |  |  |
| Цифровой идентификатор ПО                                          | 3E736B7F380863F44CC8E6F7BD211C54 |  |  |  |
| Алгоритм вычисления цифрового идентификатора                       | MD5                              |  |  |  |
| ПО                                                                 | 14103                            |  |  |  |
| ПО АКУ «Энергосистема» (Сервер ОАО «Бонолит-Строительные решения») |                                  |  |  |  |
| Идентификационное наименование ПО                                  | ESS.Metrology.dll                |  |  |  |
| Номер версии (идентификационный номер) ПО                          | не ниже 1.0                      |  |  |  |
| Цифровой идентификатор ПО                                          | 0227AA941A53447E06A5D1133239DA60 |  |  |  |
| Алгоритм вычисления цифрового                                      | MD5                              |  |  |  |
| идентификатора ПО                                                  | WIDS                             |  |  |  |

# Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3.

Таблица 2 — Состав ИК АИИС КУЭ и их метрологические характеристики

| Номер<br>ИК                                                                                                                 | Наименование<br>точки измере-<br>ний                           | Измерительные компоненты                                                  |                                                                                    |                                |                                                                            |          | Метрологические характери-<br>стики ИК |                                                                          |                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|----------|----------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                             |                                                                |                                                                           | ТН                                                                                 | Счетчик                        | УСВ                                                                        | ИВК      | Вид электро-<br>энергии                | Границы допускаемой основной относительной погрешности $(\pm\delta)$ , % | Границы до-<br>пускаемой от-<br>носительной<br>погрешности в<br>рабочих усло-<br>виях (±δ), % |
| 1                                                                                                                           | ПС 110 кВ<br>Товарково,<br>КРУН-10 кВ,<br>1 СШ 10 кВ,<br>яч. 3 | ТОЛ-СЭЩ-10<br>Кл.т. 0,5S<br>200/5<br>Рег. № 32139-<br>06<br>Фазы: A; B; C | Кл.т. 0,5<br>10000/100<br>Per. № 16687-<br>07                                      | 0,5S/1,0<br>Рег. №             | ОАО «Боно-<br>лит-<br>Строительные<br>решения»:<br>ЭНКС-2<br>Рег. № 37328- | Серверы, | Активная<br>Реактивная                 | 1,3<br>2,5                                                               | 3,4<br>5,7                                                                                    |
| 2                                                                                                                           | РП-10 кВ<br>Дзержинка,<br>ЗРУ-10 кВ, 2<br>СШ 10 кВ, яч.<br>4   | ТПОЛ-10<br>Кл.т. 0,5<br>200/5<br>Рег. № 1261-<br>08<br>Фазы: A; С         | ЗНОЛ.06-10<br>Кл.т. 0,5<br>10000/√3/100/√3<br>Рег. № 46738-<br>11<br>Фазы: A; B; C | 0,5S/1,0<br>Per. №<br>36697-08 | 15<br>ООО «МСК<br>Энерго»:<br>УССВ-2<br>Рег. № 54074-<br>13                |          | Активная<br>Реактивная                 | 1,3<br>2,5                                                               | 3,3<br>5,7                                                                                    |
| Пределы допускаемой абсолютной погрешности часов компонентов АИИС КУЭ в рабочих условиях относительно шкалы времени UTC(SU) |                                                                |                                                                           |                                                                                    |                                |                                                                            | ±5 c     |                                        |                                                                          |                                                                                               |

## Примечания:

- 1. В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2. Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
- 3. Погрешность в рабочих условиях указана для ИК № 1 для силы тока 2 % от  $I_{\text{ном}}$ , для ИК № 2 для силы тока 5 % от  $I_{\text{ном}}$ ;  $\cos \varphi = 0.8$ инд.
- 4. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УСВ на аналогичные утвержденного типа, а также замена серверов без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется техническим актом в установленном собственником АИИС КУЭ порядке. Технический акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

| Наименование характеристики                                      | Значение        |
|------------------------------------------------------------------|-----------------|
| 1                                                                | 2               |
| Количество ИК                                                    | 2               |
| Нормальные условия:                                              |                 |
| параметры сети:                                                  |                 |
| напряжение, % от Ином                                            | от 95 до 105    |
| сила тока, % от Іном                                             |                 |
| для ИК № 1                                                       | от 1 до 120     |
| для ИК № 2                                                       | от 5 до 120     |
| коэффициент мощности соѕф                                        | 0,9             |
| частота, Гц                                                      | от 49,8 до 50,2 |
| температура окружающей среды, °С                                 | от +15 до +25   |
| Условия эксплуатации:                                            |                 |
| параметры сети:                                                  |                 |
| напряжение, % от Ином                                            | от 90 до 110    |
| сила тока, % от Іном                                             |                 |
| для ИК № 1                                                       | от 1 до 120     |
| для ИК № 2                                                       | от 5 до 120     |
| коэффициент мощности соѕф                                        | от 0,5 до 1,0   |
| частота, Гц                                                      | от 49,6 до 50,4 |
| температура окружающей среды в месте расположения TT, TH, °C     | от -45 до +40   |
| температура окружающей среды в месте расположения счетчиков, °С  | от 0 до +40     |
| температура окружающей среды в месте расположения серверов, °С   | от +15 до +20   |
| Надежность применяемых в АИИС КУЭ компонентов:                   |                 |
| для счетчиков:                                                   |                 |
| среднее время наработки на отказ, ч, не менее                    | 140000          |
| среднее время восстановления работоспособности, ч для УССВ-2:    | 2               |
| среднее время наработки на отказ, ч, не менее                    | 74500           |
| среднее время восстановления работоспособности, ч<br>для ЭНКС-2: | 2               |
| среднее время наработки на отказ, ч, не менее                    | 120000          |
| среднее время восстановления работоспособности, ч                | 1               |

#### Продолжение таблицы 3

| 1                                                           | 2      |
|-------------------------------------------------------------|--------|
| для серверов:                                               |        |
| среднее время наработки на отказ, ч, не менее               | 100000 |
| среднее время восстановления работоспособности, ч           | 1      |
| Глубина хранения информации:                                |        |
| для счетчиков:                                              |        |
| тридцатиминутный профиль нагрузки в двух направлениях, сут, |        |
| не менее                                                    | 113    |
| при отключении питания, лет, не менее                       | 40     |
| для серверов:                                               |        |
| хранение результатов измерений и информации состояний       |        |
| средств измерений, лет, не менее                            | 3,5    |

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

журнал счетчиков:

параметрирования;

пропадания напряжения;

коррекции времени в счетчиках.

журнал серверов:

параметрирования;

пропадания напряжения;

коррекции времени в счетчике и сервере;

пропадание и восстановление связи со счетчиками.

Защищенность применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:
счетчиков электрической энергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

серверов.

– защита на программном уровне информации при хранении, передаче, параметрировании:

счетчиков электрической энергии;

серверов.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

серверах (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

## Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

### Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

| Наименование                                       | Обозначение                             | Количество, шт./экз. |
|----------------------------------------------------|-----------------------------------------|----------------------|
| Трансформаторы тока                                | ТОЛ-СЭЩ-10                              | 3                    |
| Трансформаторы тока                                | ТПОЛ-10                                 | 2                    |
| Трансформаторы напряжения                          | НАМИТ-10                                | 1                    |
| Трансформаторы напряжения                          | 3НОЛ.06-10                              | 3                    |
| Счетчики электрической энергии многофункциональные | СЭТ-4TM.03M                             | 2                    |
| Блоки коррекции времени                            | ЭНКС-2                                  | 1                    |
| Устройства синхронизации системного времени        | УССВ-2                                  | 1                    |
| Сервер ОАО «Бонолит-Строительные решения»          | Сервер совместимый с платформой x86-x64 | 1                    |
| Сервер ООО «МСК Энерго»                            | Сервер совместимый с платформой x86-x64 | 1                    |
| Формуляр                                           | ЭСЕО.411711.286.10.ФО                   | 1                    |
| Методика поверки                                   | _                                       | 1                    |

### Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «МСК Энерго» в части электроснабжения ООО «Калькон Калуга», аттестованном ООО «ЭнергоПромРесурс», уникальный номер записи в реестре аккредитованных лиц N RA.RU.312078.

#### Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

## Правообладатель

Общество с ограниченной ответственностью «МСК Энерго» (ООО «МСК Энерго»)

ИНН 7725567512

Юридический адрес: 119607, г. Москва, ул. Раменки, д. 17, к. 1

Телефон: (495) 197-77-14 Web-сайт: msk-energo.ru E-mail: info@msk-energo.ru

#### Изготовитель

Общество с ограниченной ответственностью «ЭСО-96» (ООО «ЭСО-96»)

ИНН 7718660052

Адрес: 115114, г. Москва, м. о. Даниловский, наб. Павелецкая, д. 2, стр. 1, эт. 1,

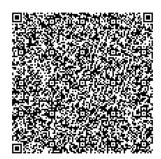
ком. 197

Телефон: (985) 822-71-17 E-mail: eso-96@inbox.ru

## Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс»

(ООО «ЭнергоПромРесурс»)


Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская,

д. 57, оф. 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312047.

