УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии

от «08» мая 2024 г. № 1160

Регистрационный № 92088-24

Лист № 1 Всего листов 7

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализатор ГАММА-100

Назначение средства измерений

Газоанализатор ГАММА-100 (далее – газоанализатор) предназначен для измерений объемной доли пропана (C_3H_8) в бинарных газовых смесях.

Описание средства измерений

Газоанализатор ГАММА-100, зав. № 230001, представляет собой стационарный одноканальный одноблочный прибор непрерывного действия.

Принцип измерения газоанализатора – оптико-акустический.

Способ отбора пробы – принудительный, за счет избыточного давления в точке отбора пробы или с помощью внешнего побудителя расхода.

На лицевую панель выведены жидкокристаллический дисплей, на котором отображается измерительная информация, клавиатура управления, индикация расхода контролируемой пробы. Газоанализатор оснащен интерфейсами RS 232, RS 485, Ethernet, с помощью которых данные могут передаваться на персональный компьютер. Также в газоанализаторе имеются унифицированный токовый выход (от 0 до 5 мА или от 4 до 20 мА, переключаются) и контакты реле для коммутации внешних цепей.

На задней панели газоанализатора расположен фирменный шильд, содержащий следующие сведения, нанесённые методом лазерной печати:

- товарный знак изготовителя;
- условное наименование газоанализатора;
- заводской номер, формата YYNNNN, где YY две последние цифры года изготовления газоанализатора, NNNN порядковый номер газоанализатора в году;
 - маркировка степени защиты по ГОСТ 14254-2015;
- условное обозначение рода тока, номинальные значения напряжения питания и частоты;
 - значение потребляемой мощности;
 - диапазон рабочих температур;
 - обозначение климатического исполнения по ГОСТ 15150-69;
 - обозначение (химическая формула) определяемого компонента;
 - диапазон измерений и единица физической величины;
 - пределы допускаемой основной погрешности газоанализатора;
 - знак утверждения типа средства измерений;
- единый знак обращения продукции на рынке государств членов Таможенного союза;
- символ № 14 по ГОСТ 12.2.091-2012, свидетельствующий о необходимости изучения эксплуатационной документации перед началом работы;
 - условное обозначение руководства по эксплуатации.

Газоанализатор обеспечивает выполнение следующих функций:

- а) выдачу световой индикации зеленого цвета при включении газоанализатора;
- б) выдачу сигнала постоянного тока, пропорционального содержанию пропана (С₃H₈);
- в) цифровую индикацию на табло содержания пропана (С₃H₈);
- г) срабатывание сигнализации ПОРОГ1 и ПОРОГ2 при достижении содержанием пропана (C_3H_8) установленных пороговых значений с одновременным переключением «сухих» контактов реле для автоматического включения (отключения) внешних исполнительных устройств;
- д) выдачу на табло информации и включение звуковой сигнализации, свидетельствующих о срабатывании сигнализации ПОРОГ1 и ПОРОГ2;
 - е) связь с внешними устройствами по цифровым каналам связи RS 232, RS 485;
 - ж) связь с внешними устройствами по цифровому каналу связи Ethernet;
- з) индикацию на табло и выдачу по цифровым каналам связи номера версии программного обеспечения (далее Π O) и цифрового идентификатора Π O.

Общий вид газоанализатора представлен на рисунке 1, место нанесения заводского номера и знака утверждения типа СИ - на рисунке 2, схема пломбирования - на рисунке 3, способ пломбирования — нанесение замазки уплотнительной У-20А ТУ 38–105375-85 на крепежные винты (согласно схеме на рис. 3), с последующим нанесением оттиска клейма ОТК. Нанесение знака поверки не предусмотрено.

а) вид спереди

б) вид сзади Рисунок 1 – Общий вид газоанализатора ГАММА-100

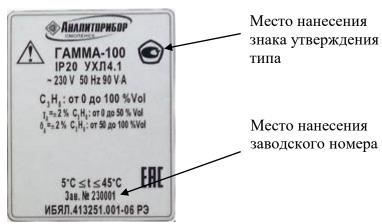


Рисунок 2 – Фирменный шильд газоанализатора ГАММА-100, зав. № 230001

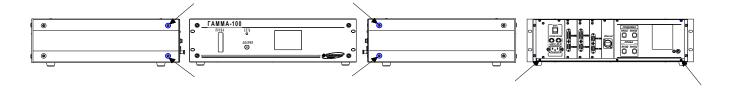


Рисунок 3 – Схема пломбировки газоанализатора от несанкционированного доступа

Программное обеспечение

Газоанализатор имеет встроенное ПО, разработанное изготовителем специально для автоматического измерения содержания определяемого компонента. Структура ПО представлена на рисунке 4.

Рисунок 4 – Структура ПО

Основные функции встроенного ПО:

- а) измерение значения объемной доли определяемого компонента пропана (С₃H₈);
- б) отображение измеренного значения объемной доли определяемого компонента пропана (C_3H_8) на сенсорном экране;
 - в) связь с внешними устройствами по цифровым каналам RS 232, RS 485, Ethernet.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014. Влияние программного обеспечения газоанализатора учтено при нормировании метрологических характеристик.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

таолица т тідентификационные данные то	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	gamma-100
Номер версии (идентификационный номер) ПО	1.0
Цифровой идентификатор ПО	1273
Алгоритм вычисления контрольной суммы исполняемого кода	CRC-16

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 плетрологи теские характеристики	
Наименование характеристики	Значение
Диапазон измерений, объемная доля, %	от 0 до 100
Пределы допускаемой основной погрешности, %:	
- приведенной $^{1)}$ в поддиапазоне от 0 до $50~\%$ включ.	± 2
- относительной в поддиапазоне св. 50 до 100 %	±2
Пределы допускаемой вариации показаний, в долях от пределов	
допускаемой основной погрешности	$\pm 0,5$
Номинальная функция преобразования по выходному сигналу	$I = I_H + K_{II} \cdot (C_{BX} - C_H)^{2}$
постоянного тока I, мА	
Выходной сигнал постоянного тока газоанализаторов, мА	от 0 до 5
	от 4 до 20
Пределы допускаемой дополнительной погрешности при	
изменении температуры окружающего воздуха от +5 до +45 °C на	
каждые 10 °C от номинального значения температуры, при которой	
определялась основная погрешность, в долях от пределов	
допускаемой основной погрешности	$\pm 1,0$
Пределы допускаемой дополнительной погрешности при	
изменении давления анализируемой газовой смеси на входе	
газоанализатора от 84 до 126,3 кПа (от 630 до 947 мм рт. ст.) на	
каждые 10 кПа (75 мм рт. ст.), в долях от пределов допускаемой	
основной погрешности	$\pm 0,3$
Предел допускаемого времени установления показаний $T_{0,9\text{ном}}$, с, не	
более	15
Допускаемый интервал времени работы газоанализатора без	
корректировки показаний измерительного канала, сут., не менее	30
Время прогрева газоанализатора, мин, не более	180
Нормальные условия измерений:	
- температура окружающей среды, °С	$+(20 \pm 5)$
- относительная влажность, %	60 ± 15
- атмосферное давление, кПа	$101,3 \pm 4,0$
I 1)	

¹⁾ нормирующее значение — разность между верхним и нижним пределами поддиапазона измерений, в котором нормирована приведенная погрешность.

I - выходной сигнал постоянного тока, мА;

 I_{H} - нижняя граница диапазона выходного токового сигнала, мA, равная:

- 0 для выходного токового сигнала от 0 до 5;
- 4 для выходного токового сигнала от 4 до 20;

 $C_{\it BX}$ - действительное значение содержания определяемого компонента на входе газоанализатора, объемная доля, %;

 $K_{\it II}$ - номинальный коэффициент преобразования, определяемый по формуле:

$$K_{II} = \frac{I_B - I_H}{C_K - C_H},$$

где $I_{\it B}$ - верхняя граница диапазона выходного токового сигнала, мA, равная:

- 5 для выходного токового сигнала от 0 до 5;
- 20 для выходного токового сигнала от 4 до 20;

 $C_{\scriptscriptstyle H}$, $C_{\scriptscriptstyle K}$ - начальное и конечное значение диапазона измерений, объемная доля, %.

Таблица 3 – Основные технические характеристики

Таблица 3 – Основные технические характеристики	
Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	от 150 до 253
- частота переменного тока, Гц	от 49 до 51
Потребляемая мощность, В А, не более	90
Габаритные размеры, мм, не более:	
- высота	146
- ширина	485
- длина	435
Масса, кг, не более	15
Условия эксплуатации:	
- окружающая среда	невзрывоопасна
- диапазон температуры окружающей среды, °C	от +5 до +45
- относительная влажность окружающей среды при температуре	, ,
+35 °C и более низких температурах без конденсации влаги, %, не более	80
- диапазон атмосферного давления, кПа	от 84,0 до 106,7
MM pt. ct.	от 630 до 800
- содержание пыли, мг/м ³ , не более	10
- производственная вибрация:	- 0
а) частота, Гц	от 10 до 55
б) амплитуда, мм	0,35
- рабочее положение горизонтальное, угол наклона в любом	0,55
направлении, градус, не более	5
Характеристики анализируемой газовой смеси (пробы) на входе	
газоанализатора:	
- диапазон температуры, °С	от +5 до +45
- диапазон давления, кПа	от 84 до 126,3
мм рт.ст	от 630 до 947
- содержание пыли, мг/м ³ , не более	1
- массовая концентрация влаги, г/м ³ , не более	5
- расход, дм ³ /мин	0.9 ± 0.1
Назначенный срок службы, лет, не менее	10
Средняя наработка до отказа, ч, не менее	20000
Класс защиты человека от поражения электрическим током по	
ΓΟCT 12.2.007.0-75	I
Газоанализатор соответствует требованиям к электромагнитной	
совместимости по ТР ТС 020/2011, группа исполнения по ГОСТ 32137-2013	IV
Степень защиты газоанализатора по ГОСТ 14254-2015	IP20
По устойчивости к воздействию температуры и влажности окружающего	
воздуха газоанализатор соответствует климатическому исполнению по	
FOCT 15150-69	УХЛ4.1
По устойчивости к воздействию атмосферного давления газоанализатор	T
относится к группе по ГОСТ Р 52931-2008	P1
По устойчивости к механическим воздействиям газоанализатор относится к	270
группе по ГОСТ Р 52931-2008	N2

Наименование характеристики	Значение
Газоанализатор в упаковке для транспортирования выдерживает	
воздействие:	
- температуры окружающего воздуха, °С	от -40 до +50
- ударов со значениями:	
а) пикового ударного ускорения m/c^2 ,	98
б) длительностью ударного импульса, мс	16
в) числом ударов	1000 ± 10
- относительной влажности окружающего воздуха при температуре	
+35 °C, %, не более	98

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и фотохимическим способом на фирменный шильд, расположенный на задней панели газоанализатора.

Комплектность средства измерений

Таблица 4 – Комплектность газоанализатора ГАММА-100, зав. № 230001

Наименование	Обозначение	Количество
Газоанализатор ГАММА-100	ИБЯЛ.413251.001-06	1 шт.
Ведомость эксплуатационных документов	ИБЯЛ.413251.001-06 ВЭ	1 экз.
Комплект эксплуатационных документов ¹⁾	_	1 компл.
Комплект ЗИП ²⁾	_	1 компл.

¹⁾ Согласно ведомости эксплуатационных документов ИБЯЛ.413251.001-06 ВЭ. Руководство по эксплуатации и методика поверки входят в комплект эксплуатационных документов.

Сведения о методиках (методах) измерений

приведены в разделе «Использование по назначению» Руководства по эксплуатации ИБЯЛ.413251.001-06 РЭ.

Нормативные и технические документы, устанавливающие требования к средству измерений

Приказ Федерального агентства по техническому регулированию и метрологии от 31 декабря 2020 г. № 2315 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»;

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия;

ГОСТ 14254-2015 Степени защиты, обеспечиваемые оболочками (Код IP);

ГОСТ 12.2.091-2012 Безопасность электрического оборудования для измерения, управления и лабораторного применения. Часть 1. Общие требования;

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

Правообладатель

Федеральное государственное унитарное предприятие «Смоленское производственное объединение «Аналитприбор» (ФГУП «СПО «Аналитприбор»)

ИНН 6731002766

Юридический адрес: 214031, г. Смоленск, ул. Бабушкина, д. 3

²⁾ Согласно ведомости ЗИП ИБЯЛ.413251.001-06 ЗИ

Изготовитель

Федеральное государственное унитарное предприятие «Смоленское производственное объединение «Аналитприбор» (ФГУП «СПО «Аналитприбор»)

ИНН 6731002766

Адрес: 214031, г. Смоленск, ул. Бабушкина, д. 3 Телефон: +7 (4812) 31-12-42, 31-30-77, 31-06-78 Бесплатный звонок по России: 8-800-100-19-50 Факс: +7 (4812) 31-75-17, 31-75-18, 31-75-16 Web-сайт: www.analitpribor-smolensk.ru E-mail: info@analitpribor-smolensk.ru

Испытательный центр

Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, г. Москва, вн. тер. г. муниципальный округ Очаково-Матвеевское,

ул. Озерная, д. 46

Телефон: +7 (495)437-55-77, факс: +7 (495)437-56-66

E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

