УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «04» июля 2024 г. № 1598

Регистрационный № 92559-24

Лист № 1 Всего листов 7

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Эталон»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Эталон» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (далее – ИИК), которые включают в себя измерительные трансформаторы тока (далее – ТТ), измерительные трансформаторы напряжения (далее – ТН), счетчики активной и реактивной электроэнергии (далее – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень — информационно-вычислительный комплекс (далее — ИВК), включающий в себя сервер баз данных (далее — БД), автоматизированные рабочие места персонала (далее — APM), устройство синхронизации системного времени (далее — УССВ), программное обеспечение (далее — ПО) ПК «Энергосфера» и каналообразующую аппаратуру.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков посредством каналообразующей аппаратуры поступает на сервер БД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации.

На верхнем — втором уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и оформление отчетных документов.

Сервер БД ежесуточно формирует и отправляет с помощью электронной почты по сети Internet с использованием электронной подписи по каналу связи по протоколу TCP/IP отчеты с результатами измерений в формате XML в АО «АТС», филиал АО «СО ЕЭС» РДУ и всем заинтересованным субъектам оптового рынка электроэнергии и мощности (далее – OPЭМ).

АИИС КУЭ также обеспечивает прием измерительной информации от АИИС КУЭ утвержденного типа третьих лиц, получаемой в формате XML-макетов в соответствии с регламентами ОРЭМ в автоматизированном режиме посредством электронной почты сети Internet.

АИИС КУЭ имеет систему обеспечения единого времени (далее – СОЕВ), которая охватывает уровни ИИК и ИВК. АИИС КУЭ оснащена УССВ, синхронизирующим собственную шкалу времени со шкалой всемирного координированного времени РФ UTC(SU) по сигналам глобальных навигационных систем ГЛОНАСС/GPS.

УССВ обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени УССВ более чем на ± 1 с. Сервер БД обеспечивает автоматическую коррекцию часов счетчиков. Коррекция часов счетчиков проводится при расхождении часов счетчиков и времени сервера БД более чем на ± 2 с.

Журналы событий счетчиков отражают: время (дату, часы, минуты, секунды) коррекции часов указанных устройств с фиксацией времени до и после коррекции или величиной коррекции времени, на которую было скорректировано устройство.

Журналы событий сервера БД отражают: время (дату, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки на средство измерений не предусмотрено.

Маркировка заводского номера АИИС КУЭ (№1142) наносится на этикетку, расположенную на тыльной стороне сервера, типографским способом. Дополнительно заводской номер указывается в паспорте-формуляре.

Программное обеспечение

В состав ПО АИИС КУЭ входят ПО счетчиков, ПО сервера ИВК, ПО АРМ на основе ПК «Энергосфера». Идентификационные данные ПО ПК «Энергосфера», установленного в ИВК, указаны в таблице 1.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014.

Конструкция средства измерения исключает возможность несанкционированного влияния на программное обеспечение и измерительную информацию.

Таблица 1 – Идентификационные данные ПО

	•		
Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПК «Энергосфера» Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	не ниже 1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

Метрологические и технические характеристики

Состав измерительных каналов (далее – ИК) АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

1 a	Габлица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики							
Номер ИК	Наименование ИК		Измерительные компоненты			Вид	Метрологические	
			TISME PITE IBIBIO ROMINIONENTE				характеристики ИК	
		TT	ТН	Счётчик	УССВ	электро- энергии	Основ-	Погреш-
							ная	ность в
							погреш-	рабочих
							ность, %	условиях, %
1	ВЛ-10 кВ №17, Кл оп. 139, ПКУ 10 кВ Ка	ТОЛ-НТ3-10 Кл. т. 0,5S	ЗНОЛП-НТЗ-10 Кл. т. 0,5	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1 Рег. № 36697-17		активная	±1,2	±4,0
1		Ктт 200/5 Рег. № 69606-17	KTH 10000/√3:100/√3 Per. № 69604-17			реактивная	±2,8	±6,9
2	ВЛ-10 кВ №12, оп. 171, ПКУ 10 кВ	ТОЛ-10-I Кл. т. 0,5S Ктт 200/5 Рег. № 15128-07	ЗНОЛП-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 23544-07 ЗНОЛП-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 23544-07 ЗНОЛП-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 46738-11	СЕ308 S31.503.OAG.SYUVJ LFZ GS01 SPDS Кл. т. 0,5S/0,5 Рег. № 59520-14	УСВ-2 Рег. № 41681-10	активная реактивная	±1,2 ±2,6	±4,0 ±5,3
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с						±5		
ripedesisi donyekuemon norpeminoeth CODD titric KV 5, c						 5		

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд, I=0.02·Іном и температуры окружающего воздуха в месте расположения счетчиков от -40 °C до +60 °C.
- 4. Кл. т. класс точности, Ктт коэффициент трансформации трансформаторов тока, Ктн коэффициент трансформации трансформационном напряжения, Рег. № регистрационный номер в Федеральном информационном фонде.
- 5. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец (Правообладатель) АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 6. Допускается замена УССВ на аналогичные утвержденного типа.
- 7. Допускается замена сервера БД без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
- 8. Допускается изменение наименований ИК без изменения объекта измерений.
- 9. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК АИИС КУЭ приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК АИИС КУЭ

Таблица 3 – Основные технические характеристики ИК АИИС КУЭ Наименование характеристики	Значение	
Количество измерительных каналов	2	
Нормальные условия:	_	
– параметры сети:		
- напряжение, % от $U_{\text{ном}}$	99 до 101	
- ток, % от I _{ном}	100 до 120	
- частота, Гц	от 49,85 до 50,15	
- коэффициент мощности соs ф	0,9	
– температура окружающей среды, °С	от +21 до +25	
Условия эксплуатации:	11 11 11 11	
параметры сети:		
- напряжение, $\%$ от $U_{\text{ном}}$	от 90 до 110	
- ток, % от I _{ном}	от 2 до 120	
- частота, Гц	от 49,5 до 50,5	
- коэффициент мощности соs ф	от 0,5 инд до 0,8 емк	
– температура окружающей среды для ТТ и ТН, °С	от –45 до +50	
– температура окружающей среды в месте расположения счетчиков, °C	от –40 до +60	
– температура окружающей среды в месте расположения сервера БД, °C	от +10 до +30	
– температура окружающей среды в месте расположения УССВ, °С	от -10 до +50	
Надежность применяемых в АИИС КУЭ компонентов:		
Счетчики:		
– среднее время наработки на отказ, ч, не менее	220000	
 среднее время восстановления работоспособности, ч 	2	
УССВ:		
– среднее время наработки на отказ, ч, не менее	35000	
 среднее время восстановления работоспособности, ч 	2	
Сервер:		
– среднее время наработки на отказ, ч, не менее	70000	
 среднее время восстановления работоспособности, ч 	1	
Глубина хранения информации:		
Счетчики:		
– тридцатиминутный профиль нагрузки, сут, не менее	45	
– при отключении питания, год, не менее	30	
Сервер:		
 хранение результатов измерений и информации состояний средств 		
измерений, год, не менее	3,5	

Надежность системных решений:

- защита от кратковременных сбоев питания сервера БД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники OPЭM с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

- журнал сервера БД:
 - изменения значений результатов измерений;
 - изменения коэффициентов трансформации;
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере БД.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - -счётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера БД;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счётчика;
 - сервера БД.

Возможность коррекции времени в:

- счётчиках (функция автоматизирована);
- сервере БД (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений;
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.	
Трансформаторы тока	ТОЛ-10-І	3	
Трансформаторы тока	ТОЛ-НТ3-10	3	
Трансформаторы напряжения	3НОЛП-10	2	
Трансформаторы напряжения заземляемые	ЗНОЛП-10	1	
Трансформаторы напряжения	ЗНОЛП-НТЗ-10	3	
Счетчики электрической энергии многофункциональные	CЭT-4TM.03M.01	1	
Счетчики электрической энергии	CE308 S31.503.OAG.SYUVJLFZ	1	
трехфазные многофункциональные	GS01 SPDS	1	
Устройство синхронизации времени	УСВ-2	1	
Программное обеспечение	ПК «Энергосфера»	1	
Паспорт-формуляр	НЭСБ.411711.АИИС.1142 ПФ	1	

Сведения о методиках (методах) измерений

приведены в документе «ГСИ. Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Эталон», аттестованном ООО «МЦМО», уникальный номер записи в реестре аккредитованных лиц Росаккредитации № 01.00324-2011.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261–94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ Р 8.596–2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Общество с ограниченной ответственностью «Эталон» (ООО «Эталон»)

ИНН 7132500620

Юридический адрес: 301475, Тульская обл., Плавский р-н, п. Октябрьский, ул. Заводская, д. 1

Изготовитель

Акционерное общество «Новосибирскэнергосбыт» (АО «Новосибирскэнергосбыт») ИНН 5407025576

Адрес: 630099, Новосибирская обл., г. Новосибирск, ул. Орджоникидзе, д. 32


Испытательный центр

Общество с ограниченной ответственностью «Проектный институт комплексной автоматизации» (ООО «ПИКА»)

ИНН 3328009874

Адрес: 600016, Владимирская обл., г. Владимир, ул. Большая Нижегородская, д. 81, каб. 307

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.314709.

