УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «06» августа 2024 г. № 1799

Лист № 1 Всего листов 5

Регистрационный № 92823-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы неавтоматического действия PVS

Назначение средства измерений

Весы неавтоматического действия PVS (далее — средство измерений) предназначены для измерений массы.

Описание средства измерений

Принцип действия средства измерений основан на использовании гравитационного притяжения. Сила тяжести объекта измерений (материала) вызывает деформацию чувствительного элемента средства измерений, которая преобразуется им в аналоговый электрический сигнал, пропорциональный массе объекта измерений. Этот сигнал подвергается аналого-цифровому преобразованию, математической обработке электронными устройствами средства измерений с дальнейшим определением значения массы объекта измерений.

Измеренное значение массы отображается в визуальной форме на дисплее средства измерений, а также может быть сохранено в запоминающем устройстве и/или передано через цифровой интерфейс на периферийные устройства, например, персональный компьютер, вторичный дисплей.

Средство измерений состоит из грузоприемного устройства (далее — ГПУ), включающего в себя тензорезисторные весоизмерительные датчики (далее — датчики), и весоизмерительного прибора (далее – прибор).

ГПУ представляет собой металлическую платформу, которая опирается на четыре латчика.

Сигнальные кабели датчиков подключаются через соединительную коробку к прибору весоизмерительному IT2000M, изготовитель «SysTec Systemtechnik und Industrieautomation GmbH», Германия.

Весоизмерительный прибор, а также устройства электрического питания и коммутации помещены в коммутационный шкаф. Вспомогательные показывающие устройства (сенсорный дисплей для отображения результатов взвешивания) органы управления средством измерений размещены на пульте управления в операторской зоне.

К средствам измерений данного типа относятся весы неавтоматического действия PVS модификации 06WT03, 07WT02, 08WT02 с заводскими номерами соответственно: 029971; 2019671; 2019571.

Маркировочная табличка средства измерений выполнена в виде пластиковой пластины крепится на корпус ГПУ средства измерений. Дополнительная маркировочная табличка нанесена на весоизмерительный прибор в виде наклейки, разрушаемая при снятии. Маркировочные таблички средства измерений содержат следующие основные данные:

- торговая марка изготовителя или его полное наименование;
- знак утверждения типа;
- обозначение типа и модификации СИ;

- заводской (серийный) номер СИ;
- максимальная нагрузка (Мах);
- минимальная нагрузка (Min);
- действительная цена деления (d);
- диапазон выборки массы тары;
- год выпуска.

Заводской номер наносится типографским способом на маркировочную табличку в виде цифрового обозначения, состоящего из арабских цифр.

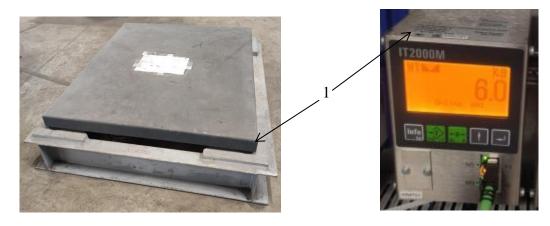


Рисунок 1 – Общий вид ГПУ средства измерений (слева), прибора весоизмерительного IT2000M (справа) (1— места нанесения маркировочных табличек)

Схема пломбировки для защиты от несанкционированного доступа представлены на рисунке 2.



Рисунок 2 — Схема пломбировки прибора весоизмерительного IT2000M (1 – разрушаемая наклейка) Нанесение знака поверки на средство измерений не предусмотрено

Программное обеспечение

Программное обеспечение (ПО) приборов является встроенным, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами.

Идентификационным признаком ПО служит номер версии, может быть просмотрен в соответствующем разделе меню.

ПО не может быть модифицировано или загружено через какой-либо интерфейс или с помощью других средств после принятия защитных мер.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования производителя.

Изменение ПО приборов через интерфейс пользователя невозможно. Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается защитной

пломбой, предотвращающей доступ к переключателю настройки и регулировки, расположенному на печатной плате прибора. Доступ к параметрам настройки и регулировки возможен только при нарушении пломбы и изменении положения переключателя настройки и регулировки. Кроме того, для контроля изменений законодательно контролируемых параметров предусмотрен несбрасываемый счетчик. Энергонезависимая память защищена переключателем настройки и паролем.

Защита ПО от преднамеренных и непреднамеренных воздействий соответствует уровню «высокий» по Р 50.2.077–2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Илентификационные данные ПО

таолица т тідентіфікаціонные данные то			
Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО			
Номер версии (идентификационный номер) ПО	V4.xx.yy*		
Цифровой идентификатор ПО	_		
* «х» и «у» — цифры от 0 до 9, необязательное числовое обозначение метрологически незначимой части ПО.			

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 – метрологические характеристики	
Наименование характеристики	Значение
Максимальная нагрузка Мах, кг	60
Минимальная нагрузка, Min, кг	0,4
Действительная цена деления (d), кг	0,02
Пределы допускаемой погрешности СИ (при поверке) в	
интервалах нагрузки, тре, кг:	
от 0,4 до 10 кг включ.;	$\pm 0,\!01$
св. 10 до 40 кг включ.;	$\pm 0,\!02$
св. 40 до 60 кг включ.	±0 , 03

Примечания

Пределы допускаемой погрешности СИ в эксплуатации равны удвоенным значениям пределов допускаемой погрешности при поверке.

Пределы допускаемой погрешности СИ после выборки массы тары соответствуют пределам допускаемой погрешности для массы нетто.

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Диапазон уравновешивания (выборки) массы тары	100 % Max
Диапазон рабочих температур, °С	от + 10 до + 20
Относительная влажность, %	до 80
Параметры электрического питания:	
– напряжение переменного тока (номинальное), В	от 187 до 242
– частота переменного тока, Гц	от 49 до 51
Габаритные размеры ГПУ средства измерений, мм,	
не более	
– высота	110
– ширина	1100
– длина	1300

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации и маркировочную табличку средства измерений.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

1 77		
Наименование	Обозначение	Количество
Весы неавтоматического действия PVS	_	1 шт.
Руководство по эксплуатации	_	1 экз.
Руководство по эксплуатации на прибор весоизмерительный	«IT2000M ONLINE OP»	1 комп.
Методика поверки	_	1 экз.

Сведения о методиках (методах) измерений

приведены в п. 3.1 «Описание работы» документа «Весы неавтоматического действия PVS. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к средству измерений

Приказ Росстандарта от 4 июля 2022 № 1622 «Об утверждении Государственной поверочной схемы для средств измерений массы».

Правообладатель

Engineering Dobersek GmbH, Германия

Адрес: Vorster Straße 493, 41169 Mönchengladbac, Germany

Телефон (факс): +49 2161 901 08 0 Адрес в Интернет: www.dobersek.com адрес электронной почты: info@ed-mg.de

Изготовитель

Engineering Dobersek GmbH, Германия

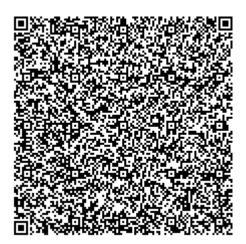
Адрес: Vorster Straße 493, 41169 Mönchengladbac, Germany

Телефон (факс): +49 2161 901 08 0 Адрес в Интернет: www.dobersek.com адрес электронной почты: info@ed-mg.de

Испытательный центр

Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, г. Москва, вн. тер. г. Муниципальный округ Очаково-Матвеевское,


ул. Озерная, д. 46

Телефон/факс: (495) 437-55-77 / 437-56-66

Адрес в Интернет: www.vniims.ru

Адрес электронной почты: office@vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

