УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «06» августа 2024 г. № 1799

Лист № 1 Всего листов 4

Регистрационный № 92828-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплекс измерительно-управляющий котельной в корп. 526 цеха СНЕВ ООО «Саратоворгсинтез»

Назначение средства измерений

Комплекс измерительно-управляющий котельной в корп. 526 цеха СНЕВ ООО «Саратоворгсинтез» (далее – комплекс) предназначен для измерений и преобразований аналоговых сигналов (сигналы силы постоянного тока, сигналы термопреобразователей сопротивления) от первичных измерительных преобразователей, формирования сигналов управления и регулирования, обеспечения сигнализации и противоаварийной защиты.

Описание средства измерений

Принцип действия комплекса основан на непрерывном измерении, преобразовании и обработке контроллером программируемым промышленным Segnetics модели SMH2Gi (далее – SMH2Gi) в комплекте с модулем расширения «МС» и модулем ввода аналогового измерительного МВА8 (регистрационный номер 31739-11 в Федеральном информационном фонде по обеспечению единства измерений) (далее – модуль МВА8) входных сигналов (сигналы силы постоянного тока от 4 до 20 мА, сигналы термопреобразователей сопротивления по ГОСТ 6651–2009 (далее – ТС)), поступающих по измерительным каналам (далее – ИК) от первичных измерительных преобразователей.

Комплекс осуществляет измерение параметров технологического процесса следующим образом:

- аналоговые сигналы силы постоянного тока от 4 до 20 мА от первичных измерительных преобразователей поступают на соответствующие входы SMH2Gi (часть сигналов поступает на входы модуля расширения «МС»);
- аналоговые сигналы TC от первичных измерительных преобразователей поступают на входы модуля MBA8 и на входы модуля расширения «МС»;
- входные сигналы, преобразованные аналого-цифровыми преобразователями модуля MBA8 и модуля расширения «МС», поступают в SMH2Gi в виде цифровых кодов по интерфейсам связи, преобразовываются в значения физических параметров технологического процесса, отображаются на дисплее SMH2Gi в виде числовых значений.

Комплекс реализует функции вторичной части ИК измерительной системы в соответствии с ГОСТ Р 8.596–2002 и включает в себя SMH2Gi, модуль расширения «МС», модуль МВА8, вспомогательное оборудование (блоки питания, клеммные колодки, адаптеры, коммутаторы и др.), размещенные в шкафу управления.

Основные функции комплекса:

– измерение и преобразование аналоговых сигналов от первичных измерительных преобразователей, обработка, контроль, индикация технологических параметров;

- предупредительная и аварийная сигнализация при выходе технологических параметров за установленные границы и при обнаружении неисправности в работе оборудования;
 - формирование сигналов управления и регулирования;
 - противоаварийная защита оборудования;
 - отображение технологической и системной информации;
- защита системной информации от несанкционированного доступа к программным средствам и изменения установленных параметров.

Заводской номер комплекса (\mathbb{N} 2) в виде цифрового обозначения наносится типографским способом на титульный лист паспорта и на маркировочную табличку, расположенную на двери шкафа управления.

Конструкция комплекса и условия эксплуатации комплекса не предусматривают нанесение знака поверки и знака об утверждении типа.

Пломбирование комплекса не предусмотрено.

Программное обеспечение

Программное обеспечение (далее – Π O) является встроенным и обеспечивает реализацию функций комплекса.

ПО комплекса реализовано на базе встроенного ПО SMH2Gi, встроенного ПО модуля MBA8 и микропрограммы модуля расширения «МС», которые установлены в производственном цикле на заводе-изготовителе. ПО не подлежит изменению в процессе эксплуатации, не может быть считано через какой-либо интерфейс и изменено. Влияние ПО учтено при нормировании метрологических характеристик комплекса.

Конструкция комплекса исключает возможность несанкционированного влияния на ПО комплекса и измерительную информацию в процессе эксплуатации.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077–2014.

Метрологические и технические характеристики

Метрологические характеристики ИК приведены в таблице 1.

Таблица 1 – Метрологические характеристики ИК

Тип ИК	Состав ИК		Метрологические характеристики ИК	
	Модуль	Контроллер	Диапазон измерений	Пределы
	ввода/вывода			допускаемой
	(сопряжения)			погрешности
ИК сигналов	Модуль			
силы	расширения «МС»	SMH2Gi	от 4 до 20 мА	$\gamma = \pm 1 \%$
постоянного		SWITZGI	01 4 <u>40 20 MA</u>	$\gamma = \pm 1$ 70
тока	_			
ИК сигналов ТС	Модуль		HCX Pt1000 (α =0,00385 °C ⁻¹)	
	расширения «МС»	SMH2Gi	и 1000П (α=0,00391 °C ⁻¹) в	$\Delta = \pm 3$ °C
	Модуль МВА8		диапазоне от -50 до +150 °C	

Примечание – Приняты следующие сокращения и обозначения:

НСХ – номинальная статическая характеристика;

- α температурный коэффициент термопреобразователя сопротивления, °С $^{-1}$;
- у пределы допускаемой приведенной к диапазону измерений погрешности, %;
- Δ пределы допускаемой абсолютной погрешности ИК, °С.

Основные технические характеристики приведены в таблице 2.

Таблица 2 – Основные технические характеристики

Наименование характеристики	Значение
Количество ИК сигналов силы постоянного тока, не более	3
Количество ИК сигналов ТС, не более	6
Напряжение питания постоянного тока, В	от 18 до 36
Условия эксплуатации:	
– температура окружающей среды, °C	от +15 до +45
– относительная влажность (без конденсации влаги), %	не более 95
– атмосферное давление, кПа	от 84 до 106
Средний срок службы, лет, не менее	10
Средняя наработка на отказ, ч	50000

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность комплекса приведена в таблице 3.

Таблица 3 – Комплектность комплекса

Наименование	Обозначение	Количество, шт./экз.
Комплекс измерительно-управляющий котельной в корп. 526 цеха CHEB OOO «Саратоворгсинтез»	_	1
Паспорт	_	1
Руководство по эксплуатации	_	1

Сведения о методиках (методах) измерений

приведены в разделе 2 руководства по эксплуатации.

Нормативные документы, устанавливающие требования к средству измерений

Приказ Федерального агентства по техническому регулированию и метрологии от 1 октября 2018 г. № 2091 «Об утверждении государственной поверочной схемы для средств измерений силы постоянного электрического тока в диапазоне от 1·10⁻¹⁶ до 100 А»;

Приказ Федерального агентства по техническому регулированию и метрологии от 30 декабря 2019 г. № 3456 «Об утверждении государственной поверочной схемы для средств измерений электрического сопротивления постоянного и переменного тока»;

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Правообладатель

Общество с ограниченной ответственностью «Саратоворгсинтез» (ООО «Саратоворгсинтез»)

ИНН 6451122250

Юридический адрес: 410059, Саратовская обл., г. Саратов, пл. Советско-Чехословацкой дружбы, д. б/н

Изготовитель

Общество с ограниченной ответственностью «Саратоворгсинтез» (ООО «Саратоворгсинтез»)

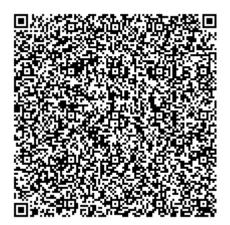
ИНН 6451122250

Адрес: 410059, Саратовская обл., г. Саратов, пл. Советско-Чехословацкой дружбы, д. б/н

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

(ООО ЦМ «СТП»)


Адрес: 420107, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, к. 5, оф. 7

Телефон: (843) 214-20-98 Факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.311229.

