# **УТВЕРЖДЕНО**

приказом Федерального агентства по техническому регулированию и метрологии от «15» августа 2024 г. № 1901

Лист № 1 Всего листов 12

Регистрационный № 92915-24

# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

# Системы измерительные МИГНА-ИС

#### Назначение средства измерений

Системы измерительные МИГНА-ИС (далее – системы) предназначены для измерений массы и объема, плотности, температуры, избыточного давления нефти, скважинной жидкости, светлых и темных нефтепродуктов, сжиженных углеводородных газов, растворов кислот и солей, воды и других жидкостей при выдаче/приёме в/из автомобильных или железнодорожных цистерн, в танк-контейнеры, в наливные суда Речного/Морского регистра, трубопроводным транспортом, при выдаче в топливные баки транспортных средств или тару потребителей, а также для управления процессом налива/слива при проведении учетно-расчетных операций, перекачки продуктов на АЗС, нефтебазах и нефтеперерабатывающих заводах.

# Описание средства измерений

Принцип действия систем основан на прямом методе измерений массы и объема жидкости в потоке, плотности, температуры и избыточного давления жидкости с помощью средств измерений, входящих в состав систем, и обработки полученных результатов блоком обработки информации.

Системы собраны на раме и состоят из средств измерений массы и объема жидкости в потоке, температуры, плотности и избыточного давления жидкости, объемной доли воды (опционально, для систем с каналом измерений массы нефти обезвоженной), блока обработки информации, вспомогательных датчиков и сигнализаторов, обеспечивающих технологический режим систем.

В качестве средств измерений массы и объема жидкости в потоке, плотности жидкости применяются счетчики-расходомеры массовые следующих типов: счетчики-расходомеры массовые Micro Motion (регистрационные №№ 71393-18, 45115-16); счетчики-расходомеры массовые Метран 360-М (регистрационный № 89922-23); расходомеры-счетчики массовые OPTIMASS x400 (регистрационный № 53804-13); расходомеры массовые Promass (модификации Promass 300, Promass 500) (регистрационный № 68358-17); расходомеры массовые Promass (регистрационный № 15201-11); расходомеры счетчики массовые кориолисовые ROTAMASS (регистрационный № 75394- 19); модели RC счетчики-расходомеры массовые № 42953-15); «ЭМИС-МАСС 260» (регистрационный счетчики-расходомеры массовые кориолисовые «ЭМИС-МАСС 260» (регистрационный № 77657-20); счетчики-расходомеры массовые Штрай-Масс (регистрационный № 70629-18); счетчики-расходомеры массовые ЭЛМЕТРО-Фломак 47266-16); (регистрационный  $N_{\underline{0}}$ счетчики-расходомеры CKAT-C (регистрационный № 75514-19); счетчики-расходомеры массовые МЛ (регистрационный № 75212-19); счетчики-расходомеры массовые МИР (регистрационный № 68584-17).

В качестве средств измерений температуры и избыточного давления жидкости применяются средства измерений утвержденного типа, обеспечивающие метрологические характеристики, приведенные в таблице 2.

В качестве средств измерений объемной доли воды применятся влагомеры сырой нефти ВСН-2 (регистрационный № 24604-12); влагомеры поточные ВСН-АТ (регистрационный № 86284-22); измерители объемного влагосодержания НОТА-ВП (регистрационный № 74828-19); влагомеры сырой нефти ВСН-2-ВТ (регистрационный № 89358-23); влагомеры нефти микроволновые МВН-1 (регистрационный № 63973-16); влагомеры нефти микроволновые МВН-2 (регистрационный № 78626-20); влагомеры нефти поточные УДВН-1пм (регистрационный № 14557-15); влагомеры поточные моделей L и F (регистрационный № 56767-14).

Блок обработки информации реализуется на базе контроллеров измерительных: устройств центральных процессорных системы управления В&R X20 (регистрационный № 84558-22); контроллеров программируемых SIMATIC S7-1200 (регистрационный № 63339-16); модулей измерительных контроллеров программируемых **SIMATIC** S7-1500 (регистрационный № 60314-15); контроллеров SCADAPack (регистрационный 86492-22); комплексов  $N_{\underline{0}}$ измерительно-вычислительных и управляющих на базе PLC (регистрационный № 15652-09); устройств программного управления TREI-5В (регистрационный № 31404-08); комплексов измерительно-вычислительных и управляющих на базе платформы Logix (регистрационный контроллеров логических программируемых ПЛК 200 (регистрационный № 84146-21); № 84822-22); контроллеров логических программируемых ПЛК160 (регистрационный № 48599-11); систем ввода-вывода распределенных Fastwel I/O (регистрационный № 58557-14); контроллеров программируемых логических REGUL RX00 (регистрационный № 63776-16); контроллеров программируемых логических MKLogic200 A (регистрационный № 85559-22); контроллеров программируемых логических MKLogic-500 (регистрационный № 65683-16); контроллеров измерительных К15 (регистрационный № 75449-19); систем распределенного ввода вывода CREVIS/СУЭР (регистрационный № 80690-20); контроллеров программируемых логических АБАК ПЛК (регистрационный 63211-16); контроллеров модульных противоаварийной защиты, регистрации и управления БАЗИС-100 (регистрационный 63643-16) контроллеров ТОПАЗ-273Е; контроллеров БРИГ-015К.

Жидкость прокачивается через систему с помощью насоса.

Насос может устанавливаться на раме системы или отдельной раме, так же предусмотрено использование внешнего насоса или безнасосная схема (опционально). Управление расходом жидкости осуществляется с помощью управляемой запорнорегулирующей арматуры: поворотного дискового затвора и/или шарового крана и/или электромагнитного клапана, а также с помощью изменения оборотов насоса (опционально).

Поток жидкости подается в газоотделитель (сепаратор), где удаляется свободный газ. Результаты измерений массы и объема жидкости в потоке, плотности жидкости, объемной доли воды передаются в блок обработки информации по цифровым протоколам и/или по импульсным и/или аналоговым интерфейсам. Результаты измерений температуры и избыточного давления жидкости передаются в блок обработки информации по аналоговому интерфейсу или по цифровому протоколу в зависимости от комплектации системы.

Блок обработки информации обеспечивает считывание и обработку информации, поступающей от средств измерений и вспомогательных датчиков, формирование архивов измерений, отображение результатов измерений, формирование управляющих сигналов, передачу результатов измерений и служебной информации в сеть автоматизации технологических процессов предприятия.

Системы имеют различные исполнения, отличающиеся диапазонами расхода жидкости; областью применения систем; конструктивным исполнением; типом электронасосного агрегата; измеряемой средой; пределами относительной погрешности измерений массы и объема жидкости в потоке; пределами допускаемой абсолютной погрешности измерений температуры и плотности жидкости; пределами допускаемой приведенной погрешности измерений избыточного давления жидкости; климатическим исполнением.

Исполнения систем измерительных МИГНА-ИС обозначаются следующим образом:

|          | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 |
|----------|---|---|---|---|---|----|----|---|---|----|----|----|
| МИГНА-ИС | X | X | X | X | X | -x | -x | X | X | X  | -x | -x |

- 1 Рабочий диапазон расхода жидкости
  - -1 от 0,5 до 10 т/ч (м<sup>3</sup>/ч);
  - -2 от 1 до 50 т/ч (м<sup>3</sup>/ч);
  - -3 от 5 до 150 т/ч (м<sup>3</sup>/ч);
  - -4 от 15 до 200 т/ч (м<sup>3</sup>/ч);
  - -5 от 30 до 500 т/ч (м<sup>3</sup>/ч).
- 2 область применения систем:
  - АЦ автомобильные цистерны;
- ТБ топливные баки (при этом в скобках дополнительно указываться количество продуктов и количества раздаточных рукавов с кранами);
  - ТК танк-контейнеры;
  - ЖД железнодорожные цистерны;
  - ИЕ иные цистерны/емкости.
- 3 конструктивное исполнение
  - -1 каркасное с облицовкой;
  - -2 каркасное без облицовки;
  - -3 каркасное раздельное с облицовкой;
  - 4 каркасное раздельное без облицовки;
  - -5 каркасное раздельное с комбинированным исполнением облицовки.
- 4 тип электронасосного агрегата
  - СВ самовсасывающий;
  - НС несамовсасывающий:
  - БН без насоса.
- 5 Вид технического применения
  - -1 налив;
  - -2 -слив;
  - -3 налив и слив;
- 6 измеряемая среда
  - СН светлые нефтепродукты;
  - ТН темные нефтепродукты;
  - НХ нефтехимия;
  - СУГ сжиженные углеводородные газы;
  - НБ нефть, без измерений объемной доли воды;
  - НВ нефть (скважинная жидкость), с измерением объемной доли воды с помощью влагомера;
  - НК нефть (скважинная жидкость), с измерением объемной доли воды косвенным методом;

- Х кислоты, спирты, солевые растворы, реагенты;
- В вода техническая, вода подтоварная, рассол;
- И иной продукт.

7 – пределы относительной погрешности измерений массы и объема жидкости

| Значение | Погрешность измерений массы | Погрешность измерений объема |
|----------|-----------------------------|------------------------------|
| M20      | ±0,20 %                     | ±0,20 %                      |
| M25      | ±0,25 %                     | ±0,25 %                      |
| M50      | ±0,50 %                     | ±0,50 %                      |
| M200     | ±2,00 %                     | ±2,00 %                      |

- 8 пределы допускаемой абсолютной погрешности измерений температуры жидкости
  - $-T05 \pm 0.5$  °C;
  - $-T10-\pm1,0$  °C;
  - TH не нормируется.
- 9 пределы допускаемой абсолютной погрешности измерений плотности жидкости
  - $-\Pi 05 \pm 0.5$  κγ/m<sup>3</sup>;
  - $-\Pi 10 \pm 1,0$  κΓ/ $M^3$ ;
  - $-\Pi H$  не нормируется.
- 10 пределы допускаемой абсолютной погрешности измерений избыточного давления жидкости, приведенной к диапазону измерений
  - -Д10-1%;
  - ДН не нормируется.
- 11 климатическое исполнение:
- У1, У2, УХЛ1, УХЛ2, ХЛ1, ХЛ2, M, ОМ или ТМ (в соответствии с ГОСТ 15150-69).
- 12 внутренний двухсимвольный номер завода изготовителя.

Общий вид систем представлен на рисунке 1. Цвет, габаритные размеры и взаимное расположение элементов конструкции могут отличаться согласно конструкторской документации.

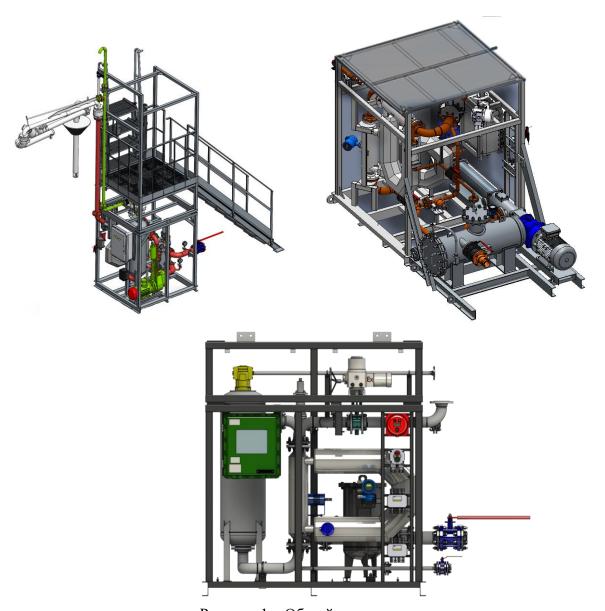
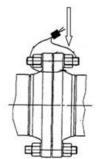
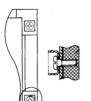





Рисунок 1 – Общий вид систем

Пломбировка систем осуществляется с помощью свинцовой (пластмассовой) пломбы и проволоки, которой пломбируется фланцевые соединения средств измерений массы и объема жидкости в потоке, плотности жидкости системы с нанесением знака поверки на пломбу. При применении в составе системы контроллеров ТОПАЗ-273Е, пломбировка осуществляется с помощью свинцовой (пластмассовой) пломбы и проволоки с нанесением знака поверки на пломбу, либо давлением на специальную мастику, расположенную в чашечке винта крепления закрывающей пластины контроллера, при применении контроллеров БРИГ-015К, пломбировка осуществляется нанесением наклейки на стыке корпуса и крышки контроллера.

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки приведены на рисунке 2.





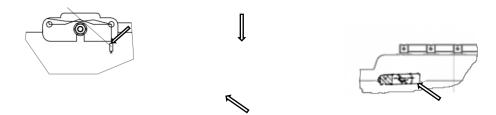



Рисунок 2 — Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки

Заводской номер системы наносится в буквенно-цифровом формате на маркировочную табличку, закрепленную на видном месте рамы, клеймением или гравировкой. В случае применения конструктивного исполнения системы с облицовкой, маркировочную табличку дублируют на видном месте одной из съемных панелей облицовки.

Обозначения мест нанесения знака утверждения типа и заводского номера представлены на рисунке 3.

| 0                                                                                                              |
|----------------------------------------------------------------------------------------------------------------|
| ООО «МИГНА» e-mail: info@migna.org тел.: 8 (495) 125-33-03 Россия, 115230, г .Москва, Варшавское шоссе, дом 42 |
| <b>Система измерительная МИГНА-ИС</b> ТУ 26.51.52-001-98186893-2023                                            |
| Модель ☐ м³/ч t окр. ср. ☐°C☐°C                                                                                |
| Qmin м³/ч t окр. ср°С°С<br>Qmax м³/ч U В Гц                                                                    |
| δ ±                                                                                                            |
| Доза min кг Дата изготовления202[ г.                                                                           |
| Pmax                                                                                                           |
| Барс RU C-RU.AЖ58.B.05383/24                                                                                   |

Рисунок 3 – Обозначения мест нанесения знака утверждения типа и заводского номера

Значение

## Программное обеспечение

Программное обеспечение систем встроенное.

Идентификационные данные (признаки)

Функции программного обеспечения: Прием, обработка и хранение измерительной информации, получаемых от средств измерений, входящих в состав системы. Расчёт средней температуры, плотности (усредненных за время измерения) и объема партии жидкости, приведенного к требуемым стандартным условиям (температура 15 °C или 20 °C, избыточное давление 0 кПа). Формирование и передача результатов измерений и отчётов. Передача результатов измерений и отчётов по промышленным протоколам связи. Результаты измерений объема и плотности нефтепродуктов приводятся к температуре плюс 15 °C (или 20 °C) и избыточного давлению 0 кПа согласно Р 50.2.076-2010 «ГСИ. Плотность нефти и нефтепродуктов. Методы расчета. Программы и таблицы приведения».

Программное обеспечение исключает возможность несанкционированного доступа, модификации или удаления данных. Доступ к текущим данным, измерительной информации и параметрам настройки защищен паролем.

Программное обеспечение не оказывает влияние на метрологические характеристики системы.

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Идентификационные данные программного обеспечения систем измерительных МИГНА-ИС представлены в таблице 1.

Таблица 1. - Идентификационные данные программного обеспечения систем измерительных МИГНА-ИС

| Tagain gament dames (upusuum)                                                           | 511.0 1011110                            |  |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
| При применении в составе систем следующих контроллеров:                                 |                                          |  |  |  |  |
| устройства центральные процессорные системы управления В&R X20; контроллеры             |                                          |  |  |  |  |
| программируемые SIMATIC S7-1200; контроллеры программируемые SIMATIC S7-1500;           |                                          |  |  |  |  |
| контроллеры SCADAPack; Комплексы измерительно-вычислительные и управляющие на базе PLC; |                                          |  |  |  |  |
| устройство программного управления TREI-5B; комплексы измерительно-вычислительные и     |                                          |  |  |  |  |
| управляющие на базе платформы Logix; контроллеры логические программируемые ПЛК 200;    |                                          |  |  |  |  |
| контроллеры логические программируемые ПЛК160; сист                                     | темы ввода-вывода распределенные Fastwel |  |  |  |  |
| I/O; контроллеры программируемые логические REGU                                        | L RX00; контроллеры программируемые      |  |  |  |  |
| логические MKLogic200 A; контроллеры программируем                                      | ые логические MKLogic-500; контроллеры   |  |  |  |  |
| измерительные К15; системы распределенного ввод                                         | а вывода CREVIS/СУЭР; контроллеры        |  |  |  |  |
| программируемые логические АБАК ПЛК; контроллер                                         | ы модульные противоаварийной защиты,     |  |  |  |  |
| регистрации и управления БАЗИС-100                                                      |                                          |  |  |  |  |
| Идентификационное наименование ПО                                                       | MIGNA-IS                                 |  |  |  |  |
| Номер версии (идентификационный номер) ПО                                               | не ниже 0.1                              |  |  |  |  |
| Цифровой идентификатор ПО                                                               | _                                        |  |  |  |  |
| При применении в составе системы кон                                                    | троллеров ТОПАЗ-273Е1)                   |  |  |  |  |
| Идентификационное наименование ПО ТОПАЗ                                                 |                                          |  |  |  |  |
| Номер версии (идентификационный номер) ПО                                               | не ниже 501                              |  |  |  |  |
| Цифровой идентификатор ПО –                                                             |                                          |  |  |  |  |
| При применении в составе системы контроллеров БРИГ-015K <sup>1)</sup>                   |                                          |  |  |  |  |
|                                                                                         | Нефтепромавтоматика                      |  |  |  |  |
| Идентификационное наименование ПО                                                       | метрологическая часть                    |  |  |  |  |
| Номер версии (идентификационный номер) ПО                                               | не ниже v1                               |  |  |  |  |
| Цифровой идентификатор ПО –                                                             |                                          |  |  |  |  |
| 1) не применяется для систем с индексом измеряемой среды «НВ» и «НК»                    |                                          |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                   |                                          |  |  |  |  |

# Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

| Таблица 2 – Метрологические характеристики                                         |               |
|------------------------------------------------------------------------------------|---------------|
| Наименование характеристики                                                        | Значение      |
| 1                                                                                  | 2             |
| Диапазон измерений расхода жидкости, $\tau/\tau$ ( $m^3/\tau$ ) 1)                 | от 0,5 до 500 |
| Пределы допускаемой относительной погрешности систем при измерении                 |               |
| массы жидкости в потоке, для исполнения систем с индексом «M20», %                 | ±0,20         |
| Пределы допускаемой относительной погрешности систем при измерении                 |               |
| объема жидкости в потоке, для исполнения систем с индексом «M20», %                | ±0,20         |
| Пределы допускаемой относительной погрешности систем при измерении                 |               |
| массы жидкости в потоке, для исполнения систем с индексом «М25», %                 | ±0,25         |
| Пределы допускаемой относительной погрешности систем при измерении                 |               |
| объема жидкости в потоке, для исполнения систем с индексом «M25», %                | ±0,25         |
| Пределы допускаемой относительной погрешности систем при измерении                 |               |
| массы жидкости в потоке, для исполнения систем с индексом «М50», % <sup>2)</sup>   | ±0,50         |
| Пределы допускаемой относительной погрешности систем при измерении                 |               |
| объема жидкости в потоке, для исполнения систем с индексом «М50», % <sup>2)</sup>  | ±0,50         |
| Пределы допускаемой относительной погрешности систем при измерении                 |               |
| массы жидкости в потоке, для исполнения систем с индексом «М200», % <sup>2)</sup>  | ±2,00         |
| Пределы допускаемой относительной погрешности систем при измерении                 |               |
| объема жидкости в потоке, для исполнения систем с индексом «М200», % <sup>2)</sup> | ±2,00         |
| Пределы допускаемой относительной погрешности измерений массы нетто                |               |
| товарной нефти, для исполнения систем с индексом «НВ» и «НК», %                    | ±0,35         |
| Пределы допускаемой относительной погрешности измерений массы                      |               |
| нетто нефти в составе скважинной жидкости, для исполнения систем с                 |               |
| индексом «НК» при определении массовой доли воды в скважинной                      |               |
| жидкости в испытательной лаборатории по ГОСТ 2477, при содержании                  |               |
| воды, объемная доля которой $\varphi$ , $\%^{1)3)$ :                               |               |
| - от $0$ до $5$ % включ.                                                           | $\pm 0,\!50$  |
| - cв. 5 до 15 % включ.                                                             | $\pm 0,\!90$  |
| – cв. 15 до 35 % включ.                                                            | $\pm 1,00$    |
| – cв. 35 до 50 % включ.                                                            | $\pm 3,75$    |
| – cв. 50 до 70 % включ.                                                            | $\pm 8,75$    |
| – cв. 70 до 85 % включ.                                                            | ±21,15        |
| – cв. 85 до 95 % включ.                                                            | $\pm 70,90$   |

| 1                                                                              | 2                   |
|--------------------------------------------------------------------------------|---------------------|
| Пределы допускаемой относительной погрешности измерений массы                  |                     |
| нетто нефти в составе скважинной жидкости, для исполнения систем с             |                     |
| индексом «НВ», при содержании воды, объемная доля которой ф, % <sup>1)</sup> : |                     |
| - от $0$ до $5$ % включ.                                                       | ±1,65               |
| - cв. 5 до 15 % включ.                                                         | $\pm 1,80$          |
| - cв. 15 до 35 % включ.                                                        | $\pm 2,95$          |
| − св. 35 до 50 % включ.                                                        | $\pm 3,\!80$        |
| − св. 50 до 70 % включ.                                                        | $\pm 9,45$          |
| – cв. 70 до 85 % включ.                                                        | $\pm 18,\!90$       |
| – cв. 85 до 95 % включ.                                                        | ±56,60%             |
| - cb. 95%                                                                      | по МИ <sup>4)</sup> |
| Диапазон измерений температуры жидкости, для исполнения систем с               |                     |
| индексом «Т05», °С 1)                                                          | от –50 до +50       |
| Пределы допускаемой абсолютной погрешности измерений температуры               |                     |
| жидкости, для исполнения систем с индексом «Т05», °С                           | $\pm 0,5$           |
| Диапазон измерений температуры жидкости, для исполнения систем с               |                     |
| индексом «Т10», °С 1)                                                          | от –60 до +220      |
| Пределы допускаемой абсолютной погрешности измерений температуры               |                     |
| жидкости, для исполнения систем с индексом «Т10», °С                           | ±1                  |
| Диапазон измерений плотности жидкости, кг/м <sup>3 1)</sup>                    | от 500 до 2000      |
| Пределы допускаемой абсолютной погрешности измерений плотности                 |                     |
| жидкости, для исполнения систем с индексом «П05», кг/м <sup>3</sup>            | $\pm 0,5$           |
| Пределы допускаемой абсолютной погрешности измерений плотности                 |                     |
| жидкости, для исполнения систем с индексом «П10», кг/м <sup>3</sup>            | ±1                  |
| Диапазон измерений избыточного давления жидкости, МПа 1)                       | от 0 до 4           |
| Пределы допускаемой абсолютной погрешности измерений избыточного               |                     |
| давления жидкости, приведенной к диапазону измерений, для систем с             |                     |
| индексом «Д10», %                                                              | ±1                  |

<sup>1)</sup> конкретное значение указано в паспорте системы

4) методика измерений

Таблица 3 – Основные технические характеристики

| Наименование характеристики                  | Значение |
|----------------------------------------------|----------|
| 1                                            | 2        |
| Наименьшая наливаемая доза для систем с      |          |
| индексом рабочего диапазона расхода жидкости |          |
| «1», дм <sup>3</sup>                         | 2        |
| Наименьшая наливаемая (сливаемая) доза для   |          |
| систем с индексом рабочего диапазона расхода |          |
| жидкости $(2) - (5)$ , дм <sup>3</sup>       | 2000     |

<sup>2)</sup> не применяется для систем с индексом измеряемой среды «НВ» и «НК» определяется по методике измерений для конкретной модели влагомера, применяемого в составе системы, и не превышает указанных значений относительной погрешности измерений массы нетто нефти в составе скважинной жидкости

| 1                                              | 2                                      |
|------------------------------------------------|----------------------------------------|
| Измеряемая среда                               | жидкость (нефть, светлые/темные        |
|                                                | нефтепродукты, нефтехимия, вода        |
|                                                | техническая, вода подтоварная, рассол, |
|                                                | сжиженный углеводородный газ, кислоты, |
|                                                | спирты, реагенты и др.)                |
| Температура измеряемой среды, °С 1)            | от –60 до +220                         |
| Избыточное давление измеряемой среды, МПа 1)   | от 0 до 4                              |
| Диапазон температуры эксплуатации, для         |                                        |
| исполнения систем с индексом «У1», «У2»,       |                                        |
| «M»,°C                                         | от -40 до +40                          |
| Диапазон температуры эксплуатации, для         |                                        |
| исполнения систем с индексом «ОМ», °С          | от -40 до +45                          |
| Диапазон температуры эксплуатации, для         |                                        |
| исполнения систем с индексом «УХЛ1»,           |                                        |
| «УХЛ2», «ХЛ1», «ХЛ2» с использованием          |                                        |
| обогрева средств измерений и узлов системы, °С | от -60 до +40                          |
| Диапазон температуры эксплуатации, для         |                                        |
| исполнения систем с индексом «ТМ», °С          | от +1 до +45                           |
| Параметры электрического питания:              |                                        |
| – напряжение переменного тока, B <sup>1)</sup> | $380^{+38}_{-57}$ ; $220^{+22}_{-33}$  |
| – частота переменного тока, Гц                 | 50±1                                   |
| 1)2)                                           | 1Ex IIB/IIA T4T2 Gb X <sup>3)</sup>    |
| Маркировка взрывозащиты <sup>1)2)</sup>        | 2Ex IIB/IIA T4T2 Gc X <sup>3)</sup>    |
| 1) ************************************        |                                        |

<sup>1) –</sup> конкретное значение указано в паспорте системы

## Таблицы 4 – Показатели надежности

| Наименование характеристики   | Значение |
|-------------------------------|----------|
| Средний срок службы, лет      | 20       |
| Средняя наработка на отказ, ч | 40000    |

#### Знак утверждения типа

наносится на маркировочную табличку, закрепленную на раме системы методом лазерной маркировки, печати или аппликацией, а также в верхней части по центру титульных листов руководства по эксплуатации и паспорта типографским способом.

# Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

| Наименование                | Обозначение     | Количество |
|-----------------------------|-----------------|------------|
| Система измерительная       | МИГНА-ИС        | 1 шт.      |
| Руководство по эксплуатации | МИГНА-ИС.001.РЭ | 1 экз.     |
| Паспорт                     | МИГНА-ИС.001.ПС | 1 экз.     |

 $<sup>^{2)}</sup>$  – категория взрывоопасности взрывоопасной газовой среды и температурный класс, устанавливается в зависимости от применяемого взрывозащищенного оборудования;  $^{3)}$  – специальные условия применения (в маркировке взрывозащиты указан знак «Х»)

#### Сведения о методиках (методах) измерений

приведены в документе «ГСИ. Масса нефти. Методика измерений с применением систем измерительных МИГНА-ИС», аттестована ВНИИР — филиал ФГУП «ВНИИМ им.Д.И.Менделеева», свидетельство об аттестации № RA.RU/313391/2709-24 от 15.04.2024. Регистрационный № ФР.1.29.2024.48474.

# Нормативные документы, устанавливающие требования к средству измерений

Приказ Росстандарта от 26 сентября 2022 г. № 2356 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях массового и объемного расходов жидкости»;

ТУ 26.51.52-001-98186893-2023 «Системы измерительные МИГНА-ИС. Технические условия».

## Правообладатель

Общество с ограниченной ответственностью «МИГНА» (ООО «МИГНА»)

ИНН 7704621783

Юридический адрес: 115230, г. Москва, вн. тер.г. муниципальный округ Нагорный,

ш. Варшавское, д. 42

Телефон: 8 (495) 125-33-03 E-mail: info@migna.org

#### Изготовитель

Общество с ограниченной ответственностью «МИГНА» (ООО «МИГНА»)

ИНН 7704621783

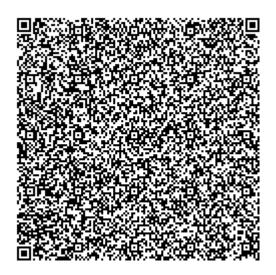
Юридический адрес: 115230, г. Москва, вн.тер.г. муниципальный округ Нагорный, ш. Варшавское, д. 42

Адрес места осуществления деятельности: 142211, MO, г. Серпухов, ул. Пушкина, д. 45

Телефон: 8 (495) 125-33-03 E-mail: info@migna.org

## Испытательный центр

Всероссийский научно-исследовательский институт расходометрии — филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии имени Д.И.Менделеева» (ВНИИР — филиал ФГУП «ВНИИМ им. Д.И.Менделеева»)


Юридический адрес: 190005, г. Санкт-Петербург, Московский пр-кт, д. 19

Фактический адрес: 420088, Республика Татарстан, г. Казань, ул. 2-я Азинская, д. 7 «а»

Телефон: +7(843) 272-70-62, факс: +7(843) 272-00-32

Web-сайт: www.vniir.org E-mail: office@vniir.org

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.310592.

