УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «21» августа 2024 г. № 1968

Лист № 1

Регистрационный № 92927-24 Всего листов 20

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (АИИС КУЭ) ООО «МСК Энерго» 6-ой этап

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (АИИС КУЭ) ООО «МСК Энерго» 6-ой этап (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электрической энергии и мощности, потребленной (переданной) за установленные интервалы времени отдельными технологическими объектами, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную информационно-измерительную систему с централизованным управлением и распределенной функцией измерений.

Измерительные каналы (ИК) состоят из двух уровней АИИС КУЭ:

Первый уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), многофункциональные счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

Второй уровень — информационно-вычислительный комплекс (ИВК), включающий в себя сервер АИИС КУЭ, устройство синхронизации системного времени (УССВ) на базе ГЛОНАСС/GPS-приемника типа УССВ-2, каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (ПО) «АльфаЦЕНТР».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются усредненные значения активной мощности и среднеквадратические значения напряжения и тока за период 0,02 с. По вычисленным среднеквадратическим значениям тока и напряжения производится вычисление полной мощности за период. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на сервер АИИС КУЭ, где осуществляется дальнейшая обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение и накопление измерительной информации, оформление отчетных документов, отображение информации на мониторах АРМ.

Сервер АИИС КУЭ имеет возможность получать измерительную информацию в виде хml-файлов установленных форматов от ИВК прочих АИИС КУЭ, зарегистрированных в Федеральном информационном фонде, и передавать всем заинтересованным субъектам оптового рынка электрической энергии и мощности (OPЭM).

Передача информации от сервера АИИС КУЭ или АРМ коммерческому оператору с электронной подписью субъекта ОРЭМ, системному оператору и в другие смежные субъекты ОРЭМ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов установленных форматов в соответствии с приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание шкалы всемирного координированного времени на всех уровнях системы (ИИК и ИВК). АИИС КУЭ оснащена УССВ, синхронизирующим собственную шкалу времени со шкалой всемирного координированного времени Российской Федерации UTC(SU) по сигналам глобальной навигационной системы ГЛОНАСС, получаемых от ГЛОНАСС/GPS-приемников.

Сравнение шкалы времени сервера АИИС КУЭ со шкалой времени УССВ осуществляется во время сеанса связи с УССВ. При наличии расхождения шкалы времени сервера АИИС КУЭ со шкалой времени УССВ ± 1 с и более производится синхронизация шкалы времени сервера АИИС КУЭ.

Сравнение шкалы времени счетчиков со шкалой времени сервера АИИС КУЭ осуществляется во время сеанса связи со счетчиками. При наличии расхождения шкалы времени счетчика со шкалой времени сервера АИИС КУЭ ± 1 с и более производится синхронизация шкалы времени счетчика.

Факты синхронизации времени с обязательной фиксацией времени (дата, часы, минуты, секунды) до и после синхронизации или величины синхронизации времени, на которую были скорректированы указанные устройства, отражаются в журналах событий счетчика и сервера АИИС КУЭ.

Нанесение знака поверки на корпус АИИС КУЭ не предусмотрено. Заводской номер АИИС КУЭ 001 наносится на корпус серверного шкафа в виде наклейки и типографским способом в формуляре на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии (АИИС КУЭ) ООО «МСК Энерго» 6-ой этап.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, проверку прав пользователей и входа с помощью пароля, защиту передачи данных с помощью контрольных сумм, что соответствует уровню – «средний» в соответствии с Р 50.2.077-2014. Идентификационные данные метрологически значимой части ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	АльфаЦЕНТР
Номер версии (идентификационный номер) ПО	не ниже 12.1
Наименование программного модуля ПО	ac_metrology.dll
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54
Алгоритм вычисления цифрового идентификатора	MD5

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические и технические характеристики приведены в таблицах 2, 3 и 4.

Таблица 2 – Состав ИК АИИС КУЭ

	ица 2 – Coctaв ик Anис куэ				T		
Номер ИК	Наименование ИК	TT	ТН	Счетчик	УССВ/Сервер	Вид электрической энергии и мощности	
1	2	3	4	5	6	7	
1	КТП-30 10/0,4 кВ, РУ-0,4 кВ, СШ 0,4 кВ, Ввод 0,4 кВ Т1	ТТЕ 2000/5 Кл. т. 0,5S Рег. № 73808-19	-	Меркурий 234 Кл. т. 0,5\$/1,0 Рег. № 75755-19		активная реактивная	
2	КТП-31 10/0,4 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, Ввод 0,4 кВ Т2	ТТЕ 2000/5 Кл. т. 0,5S Рег. № 73808-19	_	Меркурий 234 Кл. т. 0,5S/1,0 Рег. № 75755-19			активная реактивная
3	КТП-31 10/0,4 кВ, РУ-0,4 кВ, 1 СШ 0,4 кВ, Ввод 0,4 кВ ТЗ	ТТЕ 2000/5 Кл. т. 0,5S Рег. № 73808-19	_	Меркурий 234 Кл. т. 0,5\$/1,0 Рег. № 75755-19	УССВ: УССВ-2 Рег. № 54074-13	активная реактивная	
4	КТП-31 10/0,4 кВ, РУ-0,4 кВ, 1 СШ 0,4 кВ, КЛ-1 0,4 кВ, ф. Бриз-Холдинг	ТПП 400/5 Кл. т. 0,5S Рег. № 83217-21	_	Меркурий 234 Кл. т. 0,5\$/1,0 Рег. № 75755-19	Сервер АИИС КУЭ: Промышленный компьютер	активная реактивная	
5	КТП-31 10/0,4 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, КЛ-2 0,4 кВ, ф. Бриз-Холдинг	ТПП 400/5 Кл. т. 0,5S Рег. № 83217-21	_	Меркурий 234 Кл. т. 0,5\$/1,0 Рег. № 75755-19			активная реактивная
6	КТП-30 10/0,4 кВ, РЩ 0,4 кВ Банк, КЛ 0,4 кВ ф.Банк	Т-0,66 УЗ 300/5 Кл. т. 0,5S Рег. № 71031-18	_	Меркурий 234 Кл. т. 0,5\$/1,0 Рег. № 75755-19		активная реактивная	

1	2	3	4	5	6	7
7	КТП-31 10/0,4 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, КЛ 0,4 кВ, ф. ОКСИОН	-	-	Меркурий 234 Кл. т. 1/2 Рег. № 75755-19		активная реактивная
8	ПС 35 кВ Усть-Лабинск-2, КРУН 10 кВ, 2 СШ 10 кВ, яч. УВ-2, ВЛ 10 кВ УВ-2	ТПЛ 100/5 Кл. т. 0,5 Рег. № 47958-11	НАМИ-10-95 УХЛ2 10000/100 Кл. т. 0,5 Рег. № 20186-05	СЭТ-4ТМ.03М Кл. т. 0,5S/1,0 Рег. № 36697-17		активная реактивная
9	ВПУ 0,4 кВ базовой станции ПАО «МТС», КЛ 0,4 кВ БС231736	_	_	Меркурий 236 Кл. т. 1/2 Рег. № 47560-11	УССВ: УССВ-2 Рег. № 54074-13	активная реактивная
10	БКТП 10 кВ № ЖБИ-11-1601п, РУ 10 кВ, СШ 10 кВ, КЛ 10 кВ	ТОЛ-НТЗ 100/5 Кл. т. 0,5 Рег. № 69606-17	ЗНОЛ(П)-НТЗ 10000/√3:100/√3 Кл. т. 0,5 Рег. № 69604-17	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
11	ПС 110/35/6 кВ «Хадыженская-2», КРУН 6 кВ, 1 СШ 6 кВ, яч. 1	ТПЛ-СЭЩ-10 400/5 Кл. т. 0,5S Рег. № 71808-18	НАМИТ-10 6000/100 Кл. т. 0,5 Рег. № 16687-07	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	Сервер АИИС КУЭ: Промышленный компьютер	активная реактивная
12	ПС 35/6 кВ ООО «Успех», КРУН 6 кВ, 1 СШ 6 кВ, яч. 1, Ввод 6 кВ Т-1	ТШЛ 600/5 Кл. т. 0,5S Рег. № 64182-16	I-TOR 6000/√3:100/√3 Кл. т. 0,5 Рег. № 68618-17	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
13	ПС 35/6 кВ ООО «Успех», КРУН-6 кВ, Ввод 0,4 кВ ТСН-1	-	_	ПСЧ-4ТМ.06Т Кл. т. 1/1 Рег. № 82640-21		активная реактивная
14	ТП-602 10 кВ, ГРЩ-1 0,4 кВ, Ввод-1 0,4 кВ	ТС 1200/5 Кл. т. 0,5S Рег. № 26100-03	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная

1	2	3	4	5	6	7	
15	ТП-602 10 кВ, ГРЩ-1 0,4 кВ, Ввод-2 0,4 кВ	ТС 1200/5 Кл. т. 0,5S Рег. № 26100-03	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная	
16	ТП-602 10 кВ, ГРЩ-2 0,4 кВ, Ввод-1 0,4 кВ	ТС 1200/5 Кл. т. 0,5S Рег. № 26100-03	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная	
17	ТП-602 10 кВ, ГРЩ-2 0,4 кВ, Ввод-2 0,4 кВ	ТС 1200/5 Кл. т. 0,5S Рег. № 26100-03	1	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	УССВ: УССВ-2 Рег. № 54074-13		активная реактивная
18	ТП-602 10 кВ, ГРЩ-3 0,4 кВ, Ввод-1 0,4 кВ	ТС 1200/5 Кл. т. 0,5S Рег. № 26100-03	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная	
19	ТП-602 10 кВ, ГРЩ-3 0,4 кВ, Ввод-2 0,4 кВ	ТС 1200/5 Кл. т. 0,5S Рег. № 26100-03	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	Промышленный компьютер	активная реактивная	
20	РП-1550 10 кВ, РУ-0,4 кВ, 1 СШ 0,4 кВ, КЛ-1 0,4 кВ ГРЩ-1/1	ТТИ 800/5 Кл. т. 0,5S Рег. № 28139-12	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	-		активная реактивная
21	РП-1550 10 кВ, РУ-0,4 кВ, 1 СШ 0,4 кВ, КЛ-1 0,4 кВ ГРЩ-1/2	ТТИ 800/5 Кл. т. 0,5S Рег. № 28139-12	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная	

1	<u>2</u>	3	4	5	6	7
22	РП-1550 10 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, КЛ-2 0,4 кВ ГРЩ-1/1	ТТИ 800/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная
23	РП-1550 10 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, КЛ-2 0,4 кВ ГРЩ-1/2	ТТИ 800/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
24	ТП-603 10 кВ, ГРЩ-1/3, Ввод-1 0,4 кВ	ТС 200/5 Кл. т. 0,5S Рег. № 26100-03	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	УССВ: УССВ-2	активная реактивная
25	ТП-603 10 кВ, ГРЩ-1/3, Ввод-2 0,4 кВ	ТС 200/5 Кл. т. 0,5S Рег. № 26100-03	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	Рег. № 54074-13 Сервер АИИС КУЭ:	активная реактивная
26	РП-1550 10 кВ, РУ-10 кВ, 1 СШ 10 кВ, КЛ 10 кВ лин 611	ТПОЛ-10 200/5 Кл. т. 0,5 Рег. № 1261-08	3НОЛ.06 10000/√3:100/√3 Кл. т. 0,5 Рег. № 3344-08	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	Промышленный компьютер	активная реактивная
27	РП-1550 10 кВ, РУ-10 кВ, 2 СШ 10 кВ, КЛ 10 кВ лин 612	ТПОЛ-10 200/5 Кл. т. 0,5 Рег. № 1261-08	3НОЛ.06 10000/√3:100/√3 Кл. т. 0,5 Рег. № 3344-08	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
28	ПС 110/10 кВ «Пегас», ЗРУ 10 кВ, І СкШ 10 кВ, яч. 15, КЛ 10 кВ ф. 15	ТЛМ-10 600/5 Кл. т. 0,5 Рег. № 2473-05	НАМИ-10 10000/100 Кл. т. 0,2 Рег. № 11094-87	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная

1	2	3	4	5	6	7		
29	ПС 110/10 кВ «Пегас», ЗРУ 10 кВ, II СкШ 10 кВ, яч. 16, КЛ 10 кВ ф. 16	ТЛМ-10 600/5 Кл. т. 0,5 Рег. № 2473-05	НАМИ-10 10000/100 Кл. т. 0,2 Рег. № 11094-87	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		
30	КТП-712 10/0,4 кВ, РУ-0,4 кВ, 1 СШ 0,4 кВ, Ввод 0,4 кВ Т-1	ТТЕ 1500/5 Кл. т. 0,5 Рег. № 73808-19	I	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		
31	КТП-712 10/0,4 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, Ввод 0,4 кВ Т-2	ТТЕ 1500/5 Кл. т. 0,5 Рег. № 73808-19	ŀ	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	УССВ: УССВ-2 Рег. № 54074-13 Сервер АИИС КУЭ: Промышленный компьютер			активная реактивная
32	ТП-790 6/0,4 кВ, РУ-0,4 кВ, 1 СШ 0,4 кВ, Ввод 0,4 кВ Т-1	ТТЕ 1500/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		
33	ТП-790 6/0,4 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, Ввод 0,4 кВ Т-2	ТТИ 1500/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		
34	КТП-307 10/0,4 кВ, 1 СШ 0,4 кВ, Ввод 0,4 кВ Т-1	ТТИ 1000/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21				
35	КТП-307 10/0,4 кВ, 2 СШ 0,4 кВ, Ввод 0,4 кВ Т-2	ТТИ 1000/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		

1100	должение таолицы 2	2				
1	2	3	4	5	6	7
36	КТП-307 10/0,4 кВ, 2 СШ 0,4 кВ, ЛЭП 0,4 кВ Уличного хозяйства	ТОП-0,66 100/5 Кл. т. 0,5 Рег. № 75076-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
37	КТП-307 10/0,4 кВ, 1 СШ 0,4 кВ, ЛЭП 0,4 кВ Частный сектор	ТТИ 300/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
38	ВРУ 0,4 кВ Торгового центра по ул. Архангельской 12, Ввод-1 0,4 кВ	ТТЕ-А 250/5 Кл. т. 0,5 Рег. № 73808-19	7	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	УССВ: УССВ-2 Рег. № 54074-13	активная реактивная
39	ВРУ 0,4 кВ Торгового центра по ул. Архангельской 12, Ввод-2 0,4 кВ	ТТЕ-А 250/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
40	ВРУ 0,4 кВ Торгового центра по ул. Архангельской 12, Ввод 0,4 кВ АВР	_	-	Меркурий 234 Кл. т. 1/2 Рег. № 75755-19	Сервер АИИС КУЭ: Промышленный компьютер	активная реактивная
41	КТП-887 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 8	ТТИ 400/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
42	КТП-887 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 16	ТТИ 400/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
43	ТП-416 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 21	ТОП-0,66 200/5 Кл. т. 0,5 Рег. № 58386-14	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная

1	2	3	4	5	6	7		
44	ТП-416 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 24	ТОП-0,66 200/5 Кл. т. 0,5 Рег. № 58386-14	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		
45	РТП-44 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 20	ТТЕ-А 400/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		
46	РТП-44 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 8	ТТЕ-А 400/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	УССВ-2 Рег. № 54074-13			активная реактивная
47	ТП-171 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 31	ТТИ 400/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		
48	ТП-171 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 23	ТТИ 400/5 Кл. т. 0,5S Рег. № 28139-12	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	компьютер	активная реактивная		
49	ТП-786 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 7	ТТЕ-А 300/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21				активная реактивная
50	ТП-786 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 15	ТТЕ-А 300/5 Кл. т. 0,5 Рег. № 73808-19	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная		

1	2	3	4	5	6	7	
51	ВРУ-1 0,4 кВ Торгового центра, г. Вологда, ул. Псковская 2, КЛ-1 0,4 кВ ВРУ-1 – ВРУ-1-1	ТТЕ-А 200/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная	
52	ТП-198 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 1	ТТЕ-А 400/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная	
53	ТП-198 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 19	ТТЕ-А 400/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	УССВ-2 Рег. № 54074-13		активная реактивная
54	ТП-478 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 24	ТТЕ-А 250/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная	
55	ТП-478 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 20	ТТЕ-А 250/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	компьютер	активная реактивная	
56	ТП-52 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 15	ТТЕ-А 400/5 Кл. т. 0,5 Рег. № 73808-19	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21			активная реактивная
57	ТП-52 10/0,4 кВ, РУ 0,4 кВ, СШ 0,4 кВ, ф. 3	ТТЕ-А 400/5 Кл. т. 0,5 Рег. № 73808-19	_	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная	

1	2	3	4	5	6	7
58	ПС 110/10 кВ «Ишимбай», ЗРУ-10 кВ, яч. 10	ТОЛ-СЭЩ-10 400/5 Кл. т. 0,5S Рег. № 32139-06	НАМИ-10 10000/100 Кл. т. 0,2 Рег. № 11094-87	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
59	ПС 110/10 кВ «Ишимбай», ЗРУ-10 кВ, яч. 17	ТОЛ-СЭЩ-10 400/5 Кл. т. 0,5S Рег. № 32139-06	НАМИ-10 10000/100 Кл. т. 0,2 Рег. № 11094-87	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21		активная реактивная
60	ПС 110/35/6 кВ Гремячая-1 ЗРУ 6 кВ, 1СШ 6 кВ, яч. 10, КВЛ 6 кВ ф. № 9 Теплогаз 1	ТПОЛ 10 150/5 Кл. т. 0,5 Рег. № 1261-02	НАМИ-10 6000/100 Кл. т. 0,2 Рег. № 11094-87	ТЕ3000 Кл. т. 0,2S/0,5 Рег. № 77036-19	УССВ: УССВ-2 Рег. № 54074-13 Сервер АИИС КУЭ: Промышленный	активная реактивная
61	ПС 110/35/6 кВ Гремячая-1 ЗРУ 6 кВ, 2СШ 6 кВ, яч. 19, КВЛ 6 кВ ф. № 17 Теплогаз 2	ТПЛ-10-М 200/5 Кл. т. 0,5S Рег. № 22192-07	ЗНОЛП 6000/√3:100/√3 Кл. т. 0,5 Рег. № 23544-07	ТЕ3000 Кл. т. 0,2S/0,5 Рег. № 77036-19		активная реактивная
62	ШР-9 0,4 кВ Насосная, КЛ-0,4 кВ в сторону ВРУ-0,4 кВ ТД Строительный Альянс	Т-0,66 У3 150/5 Кл. т. 0,5S Рег. № 71031-18	-	ПСЧ-4ТМ.06Т Кл. т. 0,5S/1,0 Рег. № 82640-21	компьютер	активная реактивная
63	ВРУ-0,4 кВ Промплощадка, ввод 0,4 кВ	-	-	Меркурий 236 Кл. т. 1/2 Рег. № 90000-23		активная реактивная
64	ПР4 0,4 кВ, ввод 0,4 кВ	-	-	Меркурий 236 Кл. т. 1/2 Рег. № 47560-11		активная реактивная

1	2	3	4	5	6	7
65	ЩУ-1 0,22 кВ, ввод 0,22 кВ	-	_	СЭБ-1ТМ.03Т Кл. т. 1/2 Рег. № 75679-19	УССВ: УССВ-2 Рег. № 54074-13 Сервер АИИС КУЭ: Промышленный компьютер	активная реактивная

Примечания

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
 - 2 Допускается замена УССВ на аналогичные утвержденного типа.
 - 3 Допускается замена сервера АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
 - 4 Допускается замена ПО на аналогичное, с версией не ниже указанной в описании типа средств измерений
- 5 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Основные метрологические характеристики ИК АИИС КУЭ

Таолица 3 — Основны	е метрологические харак 	1				······································	ΠĊ
		Метрологические характеристики ИК (активная энергия и мощность)					
		Грани	ицы осно			ы относи	гельной
Номер ИК	Диапазон тока		осителы		погрешности измерений		
Homep Hix	дианазон тока		грешнос			очих усло	
			ений, (±			тации, (
		$\cos \varphi = 1.0$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi = 1.0$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$
1	2	3	4	5	6	7	8
	$I_{\text{1hom}} \le I_{1} \le 1.2I_{\text{1hom}}$	0,8	1,1	1,9	1,5	1,9	2,4
1 - 6	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	0,8	1,1	1,9	1,5	1,9	2,4
(TT 0,5S;	$0.1I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,0	1,5	2,7	1,6	2,2	3,1
Счетчик 0,5S)	$0.05I_{1\text{HOM}} \le I_1 < 0.1I_{1\text{HOM}}$	1,0	1,7	2,8	1,6	2,3	3,2
	$0.01I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	2,0	2,9	5,4	2,5	3,3	5,6
7; 9; 40; 63; 64	$0.2I_6 \le I \le I_{\text{make}}$	1,0	1,0	1,0	2,8	3,1	3,1
	$0.1I_{6} \le I < 0.2I_{6}$	1,0	1,5	1,5	2,8	3,4	3,4
(Счетчик 1)	$0.05I_{6} \le I < 0.1I_{6}$	1,5	1,5	1,5	3,2	3,4	3,4
8; 10; 26; 27	$I_{\text{1hom}} \le I_{1} \le 1,2I_{\text{1hom}}$	1,0	1,4	2,3	1,6	2,1	2,7
(TT 0,5; TH 0,5;	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	1,2	1,7	3,0	1,7	2,3	3,4
Счетчик 0,5S)	$0.05I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,8	2,9	5,4	2,3	3,3	5,6
11; 12	$I_{1_{\rm HOM}} \le I_1 \le 1,2I_{1_{\rm HOM}}$	1,0	1,4	2,3	1,6	2,1	2,7
11, 12	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	1,0	1,4	2,3	1,6	2,1	2,7
(TT 0,5S; TH 0,5;	$0.05I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,2	1,7	3,0	1,7	2,3	3,4
Счетчик 0,5S)	$0.01I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	2,1	3,0	5,5	2,6	3,4	5,7
13; 65	$0.2I_{6} \le I \le I_{\text{make}}$	1,0	1,0	1,0	2,8	3,1	3,1
(0 1)	$0.1I_6 \le I < 0.2I_6$	1,0	1,0	1,0	2,8	3,1	3,1
(Счетчик 1)	$0.05I_{6} \le I < 0.1I_{6}$	1,5	1,5	1,5	3,2	3,4	3,4
14 - 25; 33 - 35; 37;	$I_{1_{HOM}} \le I_1 \le 1,2I_{1_{HOM}}$	0,8	1,1	1,9	1,5	1,9	2,4
41; 42; 47; 48; 62	$0.2I_{1\text{HOM}} \le I_1 < I_{1\text{HOM}}$	0,8	1,1	1,9	1,5	1,9	2,4
(TT 0,5S;	$0.05I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,0	1,5	2,7	1,6	2,2	3,1
Счетчик 0,5S)	$0.01I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	2,0	2,9	5,4	2,5	3,3	5,6
28; 29	$I_{1_{HOM}} \leq I_1 \leq 1,2I_{1_{HOM}}$	0,9	1,2	2,0	1,5	2,0	2,5
(TT 0,5; TH 0,2;	$0.2I_{1_{100M}} \le I_1 < I_{1_{100M}}$	1,1	1,6	2,8	1,7	2,2	3,2
Счетчик 0,5S)	$0.05I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,8	2,8	5,3	2,2	3,2	5,5
30 - 32; 36; 38; 39; 43 - 46; 49 - 57	$I_{1_{\rm HOM}} \le I_1 \le 1,2I_{1_{\rm HOM}}$	0,8	1,1	1,9	1,5	1,9	2,4
	$0.2I_{\text{1hom}} \le I_1 < I_{\text{1hom}}$	1,0	1,5	2,7	1,6	2,2	3,1
(TT 0,5; Счетчик 0,5S)	$0.05I_{1\text{hom}} \le I_1 < 0.2I_{1\text{hom}}$	1,7	2,8	5,3	2,2	3,2	5,5

	Продолжение таолицы								
О.2 Г _{тюм} ≤ Г ₁ < 1 Г _{тюм} О.9 1.2 2.0 1.5 2.0 2.5	1	2	3	4	5	6	7	8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58; 59								
Счетчик 0,5S) $0,011_{\text{пкм}} \le 1_1 < 0,051_{\text{пкм}}$ $2,0$ $3,0$ $5,4$ $2,5$ $3,3$ $5,6$ $1_{\text{пкм}} \le 1_1 \le 1,21_{\text{1км}}$ $0,07$ $1,1$ $1,9$ $0,9$ $1,3$ $2,0$ $0.21_{\text{1км}} \le 1_1 \le 1,21_{\text{1км}}$ $0,9$ $1,5$ $2,7$ $1,1$ $1,6$ $2,8$ $0,051_{\text{1км}} \le 1_1 < 0,21_{\text{1км}}$ $0,9$ $1,5$ $2,7$ $1,1$ $1,6$ $2,8$ $1,6$ $1_{\text{1k}} = 1,6$	(TT 0.55 TH 0.2		,				-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c} \text{(ТТ 0,5; TH 0,2;} \\ \text{Счетчик 0,2S)} \\ \hline \\ \text{61} \\ \text{(ТТ 0,5S; TH 0,5;} \\ \text{Счетчик 0,2S)} \\ \hline \\ \text{61} \\ \hline \\ \text{(ПТ 0,5S; TH 0,5;} \\ \text{Счетчик 0,2S)} \\ \hline \\ \text{(ПТ 0,5S; TH 0,5;} \\ \text{Счетчик 0,2S)} \\ \hline \\ \text{(ПТ 0,5S; TH 0,5;} \\ \hline \\ \text{(ПП 0,5S; TH 0,5;} \\ \hline $				3,0	5,4	2,5	3,3	5,6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60		0,7	1,1	1,9	0,9	1,3	2,0	
Счетчик 0,2S) $0.051_{1100M} \le I_1 < 0.21_{1100M}$ 0.9 1.7 2.8 5.3 1.8 2.9 5.3 1.8 2.9 5.3 1.8 2.9 5.3 1.8 2.9 0.9 1.2 1.2	(TT 0,5; TH 0,2;	$0.2I_{1_{\text{HOM}}} \le I_1 < I_{1_{\text{HOM}}}$	0,9	1,5	2,7	1,1	1,6	2,8	
$ \begin{array}{c} \text{(TT 0,5S; TH 0,5; } \\ \text{Счетчик 0,2S)} \end{array} = \begin{array}{c} 0.021_{\text{пвом}} \leq I_1 < I_{\text{1лом}} \\ 0.051_{\text{1вом}} \leq I_1 < 0.21_{\text{1лом}} \\ 0.011_{\text{1лом}} \leq I_1 < 0.051_{\text{1лом}} \\ 0.011_{\text{1лом}} \leq I_1 < I_{\text{1лом}} \\ 0.021_{\text{1лом}} \leq I_1 < I_{\text{1лом}} \\ 0.051_{\text{1лом}} \leq I_1 < I_{\text{1лом}} \\ 0.001_{\text{1.00}$		$0.05I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,7	2,8	5,3	1,8	2,9	5,3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61		0,9	1,2	2,2	1,0	1,4	2,3	
Счетчик 0,2S) $0,011_{lnos} \le I_1 < 0,051_{lnos}$ $1,8$ $2,9$ $5,4$ $2,0$ $3,0$ $5,5$ $\frac{1}{5,5}$ \frac			0,9	1,2	2,2	1,0	1,4	2,3	
Номер ИК $A_{\rm III} = 100000000000000000000000000000000000$		$0.05I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,1	1,6	2,9	1,2	1,8	3,0	
Номер ИК $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Счетчик 0,28)	$0.01I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	1,8	2,9	5,4	2,0	3,0	5,5	
Номер ИК $ \begin{array}{ c c c c c c c c c }\hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$									
Номер ИКДиапазон токаотносительной погрешности измерений, $(\pm \delta)$, % сос $\phi = 0.8$ сос $\phi = 0.5$ потрешности измерений в рабочих условиях эксплуатации, $(\pm \delta)$, % сос $\phi = 0.8$ сос $\phi = 0.5$ 1234561 - 6 $I_{I_{DOM}} \le I_1 \le I, 2I_{IDOM}$ 1,81,33,73,5(ТТ 0,5S; Счетчик 1,0) $0.01I_{IBOM} \le I_1 < 0.2I_{IDOM}$ 2,41,64,03,6 $0.05I_{IBOM} \le I_1 < 0.05I_{IBOM}$ 2,41,64,03,6 $0.02I_{IBOM} \le I_1 < 0.05I_{IBOM}$ 2,72,04,23,8 $0.02I_{IBOM} \le I_1 < 0.05I_{IBOM}$ 4,52,95,54,37; 9; 40; 63; 64 $0.2I_6 \le I \le I_{MARC}$ 2,02,05,95,9 $0.05I_6 \le I < 0.2I_6$ 2,52,56,16,18; 10; 26; 27 $I_{IDOM} \le I_1 < 0.2I_{IDOM}$ 2,11,53,93,6(ТТ 0,5; ТН 0,5; Счетчик 1,0) $I_{IDOM} \le I_1 < 0.2I_{IDOM}$ 2,11,53,93,6(ТТ 0,5S; ТН 0,5; Счетчик 1,0) $I_{IDOM} \le I_1 < 0.2I_{IDOM}$ 2,11,53,93,6(ТТ 0,5S; ТН 0,5; Счетчик 1,0) $I_{IDOM} \le I_1 < 0.2I_{IDOM}$ 2,11,53,93,6(ТТ 0,5S; ТН 0,5; Счетчик 1,0) $I_{IDOM} \le I_1 < 0.2I_{IDOM}$ 2,11,53,93,6(ТО,0SI, IDOM) ы отно отно отно отно отно отно отно от						Ź			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Номор ИК	Пионором токо	_			-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	помер ик	дианазон тока					1 -		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c} 1-6 \\ (TT 0,5S; \\ Cчетчик 1,0) \\ \hline \\ (TT 0,5S; \\ Cчетчик 2) \\ \hline \\ (TT 0,5S; \\ Cчетчик 2) \\ \hline \\ (TT 0,5S; \\ Cчетчик 1,0) \\ \hline \\ (TT 0,5S; TH 0,5S; \\ (T$				<u> </u>					
$\begin{array}{c} 1 - 6 \\ (TT 0,5S; \\ \text{Счетчик 1,0)} \end{array} \hspace{0.2cm} \begin{array}{c} 0,2I_{\text{1вом}} \leq I_1 < I_{\text{1вом}} \\ 0,II_{\text{1вом}} \leq I_1 < 0,2I_{\text{1вом}} \\ 0,05I_{\text{1вом}} \leq I_1 < 0,2I_{\text{1вом}} \\ 0,05I_{\text{1вом}} \leq I_1 < 0,05I_{\text{1вом}} \\ 0,02I_{\text{1вом}} \leq I_1 < 0,05I_{\text{1вом}} \\ 0,02I_{\text{6}} \leq I \leq I_{\text{Marc}} \\ 0,02I_{6} \leq I \leq I_{\text{Marc}} \\ 0,0I_{6} \leq I < 0,2I_{6} \\ 0,05I_{6} \leq I < 0,1I_{6} \\ 0,05I_{6} \leq I < 0,1I_{6} \\ 0,2I_{1 \text{100M}} \leq I_1 \leq I_{1 \text{100M}} \\ 0,2I_{1 \text{100M}} \leq I_{1 \text{100M}} \\$	1	2	3		4	5		6	
$ \begin{array}{c} \text{(TT 0,5S;} \\ \text{Счетчик 1,0)} \end{array} = \begin{array}{c} 0.1I_{\text{1вом}} \leq I_1 < 0.2I_{\text{1вом}} \\ 0.05I_{\text{1вом}} \leq I_1 < 0.05I_{\text{1вом}} \\ 0.005I_{\text{1вом}} \leq I_1 < 0.05I_{\text{1вом}} \\ 0.02I_{\text{1вом}} \leq I_1 < 0.05I_{\text{1вом}} \\ 0.05I_{\text{6}} \leq I \leq I_{\text{Marc}} \\ 0.05I_{\text{6}} \leq I < 0.01I_{\text{6}} \\ 0.05I_{\text{6}} \leq I < 0.01I_{\text{6}} \\ 0.05I_{\text{6}} \leq I < 0.01I_{\text{6}} \\ 0.05I_{\text{6}} \leq I_{\text{6}} \\ 0.05I_{\text{6}} \leq I_{\text{6}} \\ 0.05I_{\text{6}} \leq I_{\text{6}} \\ 0.05I_{\text{6}} \leq I_{\text{6}} \\ 0.05I_{\text{1вом}} \leq I_{\text{1}} \leq I_{\text{180M}} \\ 0.05I_{\text{180M}} \leq I_{\text{1}} \leq I_{\text{180M}} \\ 0.05$		$I_{1_{\rm HOM}} \le I_1 \le 1,2I_{1_{\rm HOM}}$	1,8		1,3	3,7		3,5	
$\begin{array}{c} \text{(11 0,35,}\\ \text{Счетчик 1,0)} & \begin{array}{c} 0.05I_{\text{Ihom}} \leq I_1 < 0.1I_{\text{Ihom}} \\ 0.02I_{\text{Ihom}} \leq I_1 < 0.05I_{\text{Ihom}} \\ \end{array} & \begin{array}{c} 2.7 \\ 2.0 \\ \end{array} & \begin{array}{c} 4.2 \\ \end{array} & \begin{array}{c} 3.8 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0.02I_{\text{Ihom}} \leq I_1 < 0.05I_{\text{Ihom}} \\ \end{array} & \begin{array}{c} 4.5 \\ \end{array} & \begin{array}{c} 2.9 \\ \end{array} & \begin{array}{c} 5.5 \\ \end{array} & \begin{array}{c} 4.3 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7; 9; 40; 63; 64 \\ \end{array} & \begin{array}{c} 0.2I_6 \leq I \leq I_{\text{Marc}} \\ 0.0I_6 \leq I < 0.2I_6 \\ \end{array} & \begin{array}{c} 2.0 \\ \end{array} & \begin{array}{c} 2.0 \\ \end{array} & \begin{array}{c} 2.0 \\ \end{array} & \begin{array}{c} 5.9 \\ \end{array} & \begin{array}{c} 5.9 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0.1I_6 \leq I < 0.2I_6 \\ \end{array} & \begin{array}{c} 2.5 \\ \end{array} & \begin{array}{c} 5.9 \\ \end{array} \\ \begin{array}{c} 6.1 \\ \end{array} \\ \begin{array}{c} 6.1 \\ \end{array} \\ \begin{array}{c} 1.1 \\ 1.0 \\ \end{array} & \begin{array}{c} 0.05I_{\text{I-IOM}} \leq I_1 < I_{\text{I-IOM}} \\ \end{array} & \begin{array}{c} 2.1 \\ \end{array} & \begin{array}{c} 1.5 \\ \end{array} & \begin{array}{c} 3.9 \\ 3.6 \\ \end{array} \\ \begin{array}{c} 3.7 \\ \end{array} \\ \begin{array}{c} 0.2I_{\text{I-IOM}} \leq I_1 < I_{\text{I-IOM}} \\ \end{array} & \begin{array}{c} 2.6 \\ \end{array} & \begin{array}{c} 1.8 \\ 4.2 \\ \end{array} & \begin{array}{c} 3.7 \\ \end{array} \\ \begin{array}{c} 3.7 \\ \end{array} \\ \begin{array}{c} 0.2I_{\text{I-IOM}} \leq I_1 < I_{\text{I-IOM}} \\ \end{array} & \begin{array}{c} 2.1 \\ 1.5 \\ \end{array} & \begin{array}{c} 3.9 \\ 3.6 \\ \end{array} \\ \begin{array}{c} 3.6 \\ \end{array} \\ \begin{array}{c} 0.2I_{\text{I-IOM}} \leq I_1 < I_{\text{I-IOM}} \\ \end{array} & \begin{array}{c} 2.1 \\ 1.5 \\ \end{array} & \begin{array}{c} 3.9 \\ 3.6 \\ \end{array} \\ \begin{array}{c} 3.6 \\ \end{array} \\ \begin{array}{c} 0.2I_{\text{I-IOM}} \leq I_1 < 0.2I_{\text{I-IOM}} \\ \end{array} & \begin{array}{c} 2.1 \\ 1.5 \\ \end{array} & \begin{array}{c} 3.9 \\ 3.6 \\ \end{array} \\ \begin{array}{c} 3.6 \\ \end{array} \\ \begin{array}{c} 0.2I_{\text{I-IOM}} \leq I_1 < 0.2I_{\text{I-IOM}} \\ \end{array} & \begin{array}{c} 2.1 \\ 1.5 \\ \end{array} & \begin{array}{c} 3.9 \\ 3.6 \\ \end{array} \\ \begin{array}{c} 3.6 \\ \end{array} \\ \begin{array}{c} 0.2I_{\text{I-IOM}} \leq I_1 < 0.2I_{\text{I-IOM}} \\ \end{array} & \begin{array}{c} 2.6 \\ 1.8 \\ \end{array} & \begin{array}{c} 4.2 \\ 3.7 \\ \end{array} \\ \begin{array}{c} 3.7 \\ \end{array} \\ \begin{array}{c} 0.2I_{\text{I-IOM}} \leq I_1 < 0.2I_{\text{I-IOM}} \\ \end{array} & \begin{array}{c} 2.6 \\ 1.8 \\ \end{array} & \begin{array}{c} 3.6 \\ 3.0 \\ \end{array} & \begin{array}{c} 3.5 \\ 3.5 \\ \end{array} \\ \begin{array}{c} 3.5 \\ \end{array} \\ \begin{array}{c} 0.2I_{\text{I-IOM}} \leq I \leq I \leq I_{\text{Marc}} \\ \end{array} & \begin{array}{c} 0.2I_{\text{I-IOM}} \end{array} & \begin{array}{c} 1.0 \\ 1.0 \\ \end{array} & \begin{array}{c} 3.5 \\ 3.5 \\ \end{array} \\ \begin{array}{c} 3.8 \\ \end{array} \\ \begin{array}{c} 3.5 \\ \end{array} \\ \begin{array}{c} 3.5 \\ \end{array} \\ \begin{array}{c} 3.5 $	1 - 6	$0.2I_{\text{1hom}} \le I_1 < I_{\text{1hom}}$	1,8		1,3	3,7		3,5	
Счетчик 1,0) $ \begin{array}{c} 0.05I_{\text{Iном}} \leq I_1 < 0.1I_{\text{Inom}} \\ 0.02I_{\text{Iном}} \leq I_1 < 0.05I_{\text{Inom}} \\ 0.02I_{\text{Inom}} \leq I_1 < 0.05I_{\text{Inom}} \\ 0.02I_{\text{Inom}} \leq I_1 < 0.05I_{\text{Inom}} \\ 0.02I_{\text{Inom}} \leq I_1 \leq I_{\text{Marc}} \\ 0.2I_6 \leq I \leq I_{\text{Marc}} \\ 0.01I_6 \leq I < 0.2I_6 \\ 0.05I_6 \leq I < 0.1I_6 \\ 0.05I_{\text{Inom}} \\ 0.05I_{\text{Inom}} \leq I_1 \leq I_{\text{Marc}} \\ 0.05I_{\text{Inom}} \leq I_1 \leq I_{\text{Marc}} \\ 0.05I_{\text{Inom}} \leq I_1 < I_{\text{Inom}} \\ 0.05I_{\text{Inom}} \\ 0.05I_{Inom$	(TT 0.5S:	$0.1I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	2,4		1,6	4,0		3,6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.05I_{1\text{HOM}} \le I_1 < 0.1I_{1\text{HOM}}$	2,7		2,0	4,2		3,8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4,5		2,9	5,5		4,3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7; 9; 40; 63; 64	$0.2I_{6} \leq I \leq I_{\text{make}}$	2,0		2,0	5,9		5,9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.1I_{6} \le I < 0.2I_{6}$	2,5		2,5	6,1		6,1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.05I_{6} \le I < 0.1I_{6}$	2,5		2,5	6,1		6,1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8; 10; 26; 27	$I_{1_{\rm HOM}} \le I_1 \le 1,2I_{1_{\rm HOM}}$	2,1		1,5	3,9		3,6	
Счетчик 1,0) $0,05I_{IHOM} \le I_1 < 0,2I_{IHOM}$ $4,4$ $2,7$ $5,5$ $4,2$ 11; 12 $I_{IHOM} \le I_1 \le I,2I_{IHOM}$ $2,1$ $1,5$ $3,9$ $3,6$ (ТТ 0,5S; ТН 0,5; Счетчик 1,0) $0,05I_{IHOM} \le I_1 < 0,2I_{IHOM}$ $2,6$ $1,8$ $4,2$ $3,7$ О,02 $I_{IHOM} \le I_1 < 0,05I_{IHOM}$ $4,6$ $3,0$ $5,6$ $4,4$ 13 $0,2I_6 \le I \le I_{MAKC}$ $1,0$ $1,0$ $3,5$ $3,5$ (Сметули 1) $0,1I_6 \le I < 0,2I_6$ $1,0$ $1,0$ $3,5$ $3,5$	(TT 0.5: TH 0.5:	$0.2I_{1\text{Hom}} \le I_1 < I_{1\text{Hom}}$	2,6		1,8	4,2		3,7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.05I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	4,4		2,7	5,5		4,2	
(TT 0,5S; TH 0,5; Счетчик 1,0)	(TT 0,5S; TH 0,5;	$I_{1_{\text{HOM}}} \le I_1 \le 1,2I_{1_{\text{HOM}}}$	2,1		1,5	3,9		3,6	
Счетчик 1,0) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	2,1		1,5	3,9		3,6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.05I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	2,6		1,8	4,2		3,7	
$0.1I_{6} \le I < 0.2I_{6} \qquad 1.0 \qquad 1.0 \qquad 3.5 \qquad 3.5$ (Crosswer 1)			4,6		3,0	5,6		4,4	
(Cyonyur 1)	13	$0.2I_{6} \leq I \leq I_{\text{make}}$	1,0		1,0	3,5		3,5	
(Счетчик 1) $0.05I_6 \le I < 0.1I_6$ 1.5 1.5 3.7 3.7		$0.1I_{6} \le I < 0.2I_{6}$	1,0		1,0	3,5		3,5	
	(Счетчик 1)	$0.05I_{6} \le I < 0.1I_{6}$	1,5		1,5	3,7		3,7	

продолжение таолиці	JI J				
1	2	3	4	5	6
14 - 25; 33 - 35; 37;	$I_{1_{\text{HOM}}} \leq I_1 \leq 1,2I_{1_{\text{HOM}}}$	1,8	1,3	3,7	3,5
41; 42; 47; 48; 62	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	1,8	1,3	3,7	3,5
(TT 0,5S;	$0.05I_{1_{\text{HOM}}} \le I_1 < 0.2I_{1_{\text{HOM}}}$	2,4	1,6	4,0	3,6
Счетчик 1,0)	$0.02I_{1_{\text{HOM}}} \le I_1 < 0.05I_{1_{\text{HOM}}}$	4,5	2,9	5,5	4,3
28; 29	$I_{1_{\text{HOM}}} \le I_1 \le 1,2I_{1_{\text{HOM}}}$	1,9	1,4	3,8	3,6
(TT 0,5; TH 0,2;	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	2,4	1,7	4,1	3,7
Счетчик 1,0)	$0.05I_{1\text{hom}} \le I_1 < 0.2I_{1\text{hom}}$	4,3	2,6	5,4	4,2
30 - 32; 36; 38; 39; 43 - 46; 49 - 57	$I_{\text{1hom}} \le I_{1} \le 1,2I_{\text{1hom}}$	1,8	1,3	3,7	3,5
,	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	2,4	1,6	4,0	3,6
(ТТ 0,5; Счетчик 1,0)	$0.05I_{1_{\text{HOM}}} \le I_1 < 0.2I_{1_{\text{HOM}}}$	4,3	2,6	5,4	4,2
58; 59	$I_{1\text{hom}} \leq I_1 \leq 1,2I_{1\text{hom}}$	1,9	1,4	3,8	3,6
30, 37	$0.2I_{1\text{hom}} \le I_1 < I_{1\text{hom}}$	1,9	1,4	3,8	3,6
(TT 0,5S; TH 0,2;	$0.05I_{1_{\text{HOM}}} \le I_1 < 0.2I_{1_{\text{HOM}}}$	2,4	1,7	4,1	3,7
Счетчик 1,0)	$0.02I_{1_{\text{HOM}}} \le I_1 < 0.05I_{1_{\text{HOM}}}$	4,5	2,9	5,6	4,4
60	$I_{1_{\text{HOM}}} \le I_1 \le 1,2I_{1_{\text{HOM}}}$	1,6	1,1	2,3	1,9
(TT 0,5; TH 0,2;	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	2,3	1,4	2,7	2,1
Счетчик 0,5)	$0.05I_{1\text{hom}} \le I_1 < 0.2I_{1\text{hom}}$	4,3	2,5	4,5	2,9
61	$I_{1_{\text{HOM}}} \le I_1 \le 1,2I_{1_{\text{HOM}}}$	1,9	1,2	2,4	2,0
	$0.2I_{\text{1hom}} \le I_1 < I_{\text{1hom}}$	1,9	1,2	2,4	2,0
(TT 0,5S; TH 0,5;	$0.05I_{1\text{hom}} \le I_1 < 0.2I_{1\text{hom}}$	2,4	1,5	2,9	2,2
Счетчик 0,5)	$0.02I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	4,4	2,7	4,7	3,1
65	$0.2I_{6} \leq I \leq I_{\text{make}}$	2,0	2,0	5,9	5,9
(Счетчик 2)	$0.1I_{6} \le I < 0.2I_{6}$	2,5	2,5	6,1	6,1

Пределы допускаемых смещений шкалы времени СОЕВ АИИС КУЭ относительно национальной шкалы времени UTC(SU) не более ± 5 с

Примечания

¹ Характеристики погрешности ИК даны для измерений электрической энергии и средней мощности (получасовой).

² Погрешность в рабочих условиях указана для $\cos \varphi = 1.0$; 0.8; 0.5 и температуры окружающего воздуха в месте расположения счетчиков электрической энергии от +5 до +40 °C.

³ В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95.

Таблица 4 – Основные технические характеристики ИК АИИС КУЭ

Наименование характеристики	Значение
Количество измерительных каналов	65
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до101
- ток (для счетчиков, включаемых через трансформатор), % от Іном	от 1 до 120
- ток (для счетчиков прямого включения), А	от $0.05\mathrm{I}_{\mathrm{6}}$ до $\mathrm{I}_{\mathrm{макс}}$
- частота, Гц	от 49,85 до 50,15
 коэффициент мощности соѕф 	от 0,5 инд. до 0,8 емк.
температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle{\mathrm{HOM}}}$	от 90 до 110
- ток (для счетчиков, включаемых через трансформатор), $\%$ от $I_{\text{ном}}$	от 1 до 120
- ток (для счетчиков прямого включения), А	от $0.05\mathrm{I}_{\mathrm{б}}$ до $\mathrm{I}_{\mathrm{макс}}$
- частота, Гц	от 49,5 до 50,5
 коэффициент мощности соѕф 	от 0,5 инд. до 0,8 емк.
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчиков, °С	от +5 до +40
магнитная индукция внешнего происхождения, мТл, не более	0,5
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
- среднее время наработки на отказ, ч, не менее	220000
- среднее время восстановления работоспособности, сут, не более Сервер АИИС КУЭ:	3
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч, не более	1
УССВ:	
- среднее время наработки на отказ, ч, не менее	74500
- среднее время восстановления работоспособности, ч, не более	2
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях, сут,	4.7
не менее	45
- при отключении питания, лет, не менее Сервер АИИС КУЭ:	5
- хранение результатов измерений и информации о состоянии	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения (в т. ч. и пофазного);
 - коррекции времени в счетчике;
- журнал сервера:
 - параметрирования;

- пропадания напряжения;
- коррекции времени в счетчиках и сервере;
- пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения и тока;
 - испытательной коробки;
 - сервера (серверного шкафа);
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - сервера.

Возможность коррекции времени:

- в счетчиках (функция автоматизирована);
- в сервере (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист формуляра типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
1	2	3
Трансформатор тока	TTE	18
Трансформатор тока	ТПП	6
Трансформатор тока	Т-0,66 У3	6
Трансформатор тока	ТПЛ	2
Трансформатор тока	ТОЛ-НТЗ	3
Трансформатор тока	ТПЛ-СЭЩ-10	2
Трансформатор тока	ТШЛ	3
Трансформатор тока	TC	24
Трансформатор тока	ТТИ	36
Трансформатор тока	ТПОЛ-10	4
Трансформатор тока	ТЛМ-10	4
Трансформатор тока	ТОП-0,66	9
Трансформатор тока	TTE-A	39
Трансформатор тока	ТОЛ-СЭЩ-10	4
Трансформатор тока	ТПОЛ 10	2
Трансформатор тока	ТПЛ-10-М	2
Трансформатор напряжения	НАМИ-10-95 УХЛ2	1
Трансформатор напряжения	ЗНОЛ(П)-НТЗ	3
Трансформатор напряжения	НАМИТ-10	1
Трансформатор напряжения	I-TOR	3
Трансформатор напряжения	3НОЛ.06	6

Tpogomkemie radings s				
1	2	3		
Трансформатор напряжения	НАМИ-10	5		
Трансформатор напряжения	ЗНОЛП	3		
Счетчик электрической энергии	Меркурий 234	8		
Счетчик электрической энергии	СЭТ-4TM.03М	1		
Счетчик электрической энергии	Меркурий 236	3		
Счетчик электрической энергии	ПСЧ-4ТМ.06Т	50		
Счетчик электрической энергии	TE3000	2		
Счетчик электрической энергии	СЭБ-1ТМ.03Т	1		
Устройство синхронизации системного времени	УССВ-2	1		
Сервер АИИС КУЭ	Промышленный компьютер	1		
Программное обеспечение	АльфаЦЕНТР	1		
Формуляр	АСВЭ 491.00.000 ФО	1		

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений количества электрической энергии (мощности) с использованием системы автоматизированной информационно-измерительной коммерческого учета электрической энергии (АИИС КУЭ) ООО «МСК Энерго» 6-ой этап», аттестованном ООО «АСЭ» г. Владимир, аттестат аккредитации № RA.RU.312617.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Общество с ограниченной ответственностью «МСК Энерго» (ООО «МСК Энерго») ИНН 7725567512

Юридический адрес: 119607, г. Москва, ул. Раменки, д. 17, к. 1

Изготовитель

Общество с ограниченной ответственностью «Автоматизированные системы в энергетике» (ООО «АСЭ»)

ИНН 3329074523

Юридический адрес: 600031, г. Владимир, ул. Юбилейная, д. 15

Адрес места осуществления деятельности: 600009, г. Владимир, ул. Почаевский Овраг, д. 1

Испытательный центр

Общество с ограниченной ответственностью «Автоматизированные системы в энергетике» (ООО «АСЭ»)

Юридический адрес: 600031, г. Владимир, ул. Юбилейная, д. 15

Адрес места осуществления деятельности: 600009, г. Владимир, ул. Почаевский Овраг, д. 1

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312617.

