УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «21» августа 2024 г. № 1968

Лист № 1 Всего листов 7

Регистрационный № 92929-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Прикамье»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Прикамье» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электроэнергии, средне интервальной мощности;
- периодический (1 раз в полчаса, час, сутки) и (или) по запросу автоматический сбор привязанных к единому календарному времени состояния средств измерений и результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии и мощности (далее OPЭМ);
- обеспечение защиты оборудования, программного обеспечения и хранящихся в АИИС КУЭ данных от несанкционированного доступа на физическом и программном уровнях (установка пломб, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
- автоматическое ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее — ИИК), которые включают в себя измерительные трансформаторы тока (далее — ТТ), счетчики активной и реактивной электроэнергии (далее — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень – информационно-вычислительный комплекс электроустановки (далее – ИВКЭ), включает в себя устройство сбора и передачи данных ЭКОМ-3000 (далее – УСПД), устройство синхронизации системного времени (далее – УССВ), входящее в состав УСПД, а также каналообразующую аппаратуру.

3-й уровень – информационно-вычислительный комплекс (далее – ИВК), включает в себя технические средства приема-передачи данных (каналообразующую аппаратуру), коммуникационное оборудование, сервер баз данных (далее – БД) АИИС КУЭ, автоматизированные рабочие места персонала (далее – АРМ), программное обеспечение (далее – ПО) ПК «Энергосфера».

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые с первичными напряжениями по проводным линиям связи поступают на соответствующие входы электронного счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации измерительных трансформаторов, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Сервер БД ежесуточно формирует и отправляет с помощью электронной почты по каналу связи по сети Internet по протоколу TCP/IP отчеты с результатами измерений в формате XML на APM субъекта оптового рынка. АРМ субъекта оптового рынка в автоматическом режиме по сети Internet с использованием электронной подписи раз в сутки формирует и отправляет с помощью электронной почты по каналу связи по протоколу TCP/IP отчеты с результатами измерений в формате XML в АО «АТС». Сервер БД ежесуточно формирует и отправляет с помощью электронной почты по каналу связи по сети Internet по протоколу TCP/IP отчеты с результатами измерений в формате XML в филиал АО «СО ЕЭС» РДУ и всем заинтересованным субъектам ОРЭМ.

АИИС КУЭ также обеспечивает прием измерительной информации от АИИС КУЭ утвержденного типа третьих лиц, получаемой в формате XML-макетов в соответствии с регламентами ОРЭМ в автоматизированном режиме посредством электронной почты сети Internet.

АИИС КУЭ оснащена системой обеспечения единого времени (далее – COEB), которая охватывает все уровни АИИС КУЭ – ИИК, ИВКЭ и ИВК.

СОЕВ включает в себя УССВ на основе приемника сигналов точного времени от спутников глобальной системы позиционирования ГЛОНАСС/GPS, встроенное в УСПД, встроенные часы сервера БД и счетчиков.

Коррекция часов УСПД проводится при расхождении часов УСПД и времени УССВ более чем на $\pm~1$ с. УСПД обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени УСПД

более чем на ± 1 с. Часы счетчиков синхронизируются от часов УСПД. Коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 2 с.

Журналы событий счетчика отражают: время (дату, часы, минуты, секунды) коррекции часов (время до коррекции и время после коррекции).

Журналы событий УСПД и сервера БД отражают: время (дату, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки на средство измерений не предусмотрено.

Заводской номер (№ 1289) в цифровом формате указывается типографским способом в паспорте-формуляре АИИС КУЭ, а также на специальном информационном шильдике на передней дверце шкафа с сервером БД в составе уровня ИВК.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту ПО и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПК «Энергосфера» Библиотека pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Конструкция средства измерения исключает возможность несанкционированного влияния на программное обеспечение и измерительную информацию.

Метрологические и технические характеристики

Состав измерительных каналов (далее – ИК) АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

Номер ИК		Измерительные компоненты				Dava	Метрологические характеристики ИК	
		TT	ТН	Счетчик	УСПД	Вид электро- энергии	Основ- ная погреш- ность, %	Погреш- ность в рабочих условиях, %
1	ПС №3 6 кВ, РУ- 0,4 кВ, яч. Склад 110	Т-0,66 Кл. т. 0,5S Ктт 200/5 Рег. № 67928-17	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5 Рег. № 36697-17	ЭКОМ-3000 Рег. № 17049-14	активная	±0,8 ±2,2	±2,7 ±5,1
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с							±5	

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд, I=0.02·Іном и температуры окружающего воздуха в месте расположения счетчиков от -40 °C до +60 °C.
- 4. Кл. т. класс точности, Ктт коэффициент трансформации трансформаторов тока, Рег. № регистрационный номер в Федеральном информационном фонде, ТН трансформатор напряжения.
- 5. Допускается замена ТТ, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 6. Допускается замена УСПД на аналогичные утвержденного типа.
- 7. Допускается замена сервера БД без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
- 8. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК АИИС КУЭ приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК АИИС КУЭ

Наименование характеристики	Значение
Количество измерительных каналов	1
Нормальные условия:	
– параметры сети:	
- напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle \mathrm{HOM}}$	99 до 101
- Tok, $\%$ ot I_{hom}	100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cos ф	0,9
– температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
– параметры сети:	
- напряжение, % от $U_{\mbox{\tiny HOM}}$	от 90 до 110
- tok, $\%$ ot I_{hom}	от 2 до 120
- частота, Гц	от 49,5 до 50,5
- коэффициент мощности cos ф	от 0,5 инд до 0,8 емк
– температура окружающей среды для TT, °C	от –45 до +40
 температура окружающей среды в месте расположения счетчиков 	
электроэнергии, °С	от –40 до +60
 температура окружающей среды в месте расположения УСПД, °С 	от 0 до +40
– температура окружающей среды в месте расположения сервера, °C	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики электроэнергии:	
среднее время наработки на отказ, ч, не менее	220000
– среднее время восстановления работоспособности, ч УСПД:	2
– среднее время наработки на отказ, ч, не менее	100000
 среднее время восстановления работоспособности, ч 	24
Сервер:	
– среднее время наработки на отказ, ч, не менее	35000
 среднее время восстановления работоспособности, ч 	1
Глубина хранения информации:	
Счетчики электроэнергии:	
 тридцатиминутный профиль нагрузки, сут, не менее 	114
при отключении питания, год, не менее	40
УСПД:	
 суточные данные о тридцатиминутных приращениях 	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, сут, не менее	45
– сохранение информации при отключении питания, год, не менее	10
Сервер:	
– хранение результатов измерений и информации состояний средств	
измерений, год, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера БД и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники OPЭM с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;
- журнал сервера БД:
 - изменения значений результатов измерений;
 - изменения коэффициентов трансформации измерительных трансформаторов;
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике, УСПД и сервере БД.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - -счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера БД;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - УСПД;
 - сервера БД.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере БД (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы паспорта-формуляра на АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформаторы тока	T-0,66	3
Счетчик электрической энергии многофункциональные	CЭT-4TM.03M.08	1
Устройство сбора и передачи данных	ЭКОМ-3000	1
Программное обеспечение	ПК «Энергосфера»	1
Паспорт-формуляр	РЭСС.411711.АИИС.1289 ПФ	1

Сведения о методиках (методах) измерений

приведены в документе «ГСИ. Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Прикамье», аттестованном ООО «МЦМО», г. Владимир, уникальный номер записи в реестре аккредитованных лиц № 01.00324-2011.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

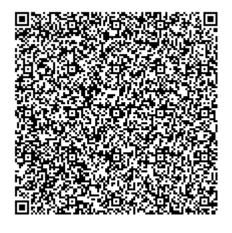
Общество с ограниченной ответственностью «Прикамье» (ООО «Прикамье») ИНН 5904997980

Юридический адрес: 618820, Пермский край, г.о. Горнозаводский, г. Горнозаводск, ул. Калинина, зд. 4

Изготовитель

Общество с ограниченной ответственностью «Прикамье» (ООО «Прикамье») ИНН 5904997980

Адрес: 618820, Пермский край, г.о. Горнозаводский, г. Горнозаводск, ул. Калинина, зд. 4


Испытательный центр

Акционерное общество «РЭС Групп» (АО «РЭС Групп»)

ИНН 3328489050

Адрес: 600029, г. Владимир, ул. Аграрная, д. 14А

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312736.

