УТВЕРЖДЕНО приказом Федерального агентства по техническому регулированию и метрологии от «11» сентября 2024 г. № 2193

Регистрационный № 93170-24

Лист № 1 Всего листов 10

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «НЗНП»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «НЗНП» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационные комплексы (далее ИИК), которые включают в себя трансформаторы тока (далее TT), трансформаторы напряжения (далее TH) и счетчики активной и реактивной электроэнергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.
- 2-й уровень измерительно-вычислительный комплекс электроустановки (далее ИВКЭ), включающий в себя контроллеры многофунциональные «Интелектуальный конроллер SM160-02М» (далее SM160-02М) и каналообразующую аппаратуру.
- 3-й уровень информационно-вычислительный комплекс (далее ИВК) АО «НЗНП», включающий в себя каналообразующую аппаратуру, сервер баз данных (далее БД) АИИС КУЭ, автоматизированные рабочие места персонала (APM), устройство синхронизации времени (далее УСВ) типа УСВ-3 и программное обеспечение (далее ПО) «Пирамида 2.0» (Шкаф-1 АИИС КУЭ) и «Пирамида 2.0» (Шкаф-2 АИИС КУЭ).

ИВКЭ и ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС».

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы SM160-02M, где осуществляется хранение измерительной информации, её накопление и передачу накопленных данных на верхний уровень системы, а также отображение информации по подключенным к SM160-02M устройствам.

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, при помощи ПО «Пирамида 2.0» производится вычисление значений электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование, накопление и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена устройством синхронизации времени УСВ-3 (далее – УСВ), синхронизирующим собственную шкалу времени со шкалой всемирного координированного времени Российской Федерации UTC(SU) по сигналам глобальной навигационной системы ГЛОНАСС.

УСВ обеспечивает автоматическую коррекцию часов SM160-02M. Сравнение шкалы времени SM160-02M со шкалой времени УСВ осуществляется во время сеанса связи с УСВ, каждый сеанс связи, но не реже 1 раза в сутки. При наличии расхождения ± 1 с и более SM160-02M производит синхронизацию собственной шкалы времени со шкалой времени УСВ.

Сравнение шкалы времени Сервера БД со шкалой времени SM160-02M осуществляется во время каждого сеанса связи с SM160-02M, но не реже 1 раза в сутки. При наличии расхождения ± 2 с и более Сервер БД производит синхронизацию собственной шкалы времени с SM160-02M.

Сравнение шкалы времени счетчиков со шкалой времени SM160-02M осуществляется во время сеанса связи со счетчиками, но не реже 1 раза в сутки. При наличии расхождения ± 2 с и более SM160-02M производит синхронизацию шкалы времени счетчиков с собственной шкалой времени SM160-02M.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты, секунды) коррекции часов.

Журналы событий сервера БД и SM160-02M отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки на АИИС КУЭ не предусмотрено.

Маркировка заводского номера и даты выпуска АИИС КУЭ наносится на этикетку, расположенную на коммутационном шкафу, типографическим способом. Дополнительно заводской номер указывается в паспорте-формуляре.

Заводской номер АИИС КУЭ: ЕГ-01.149.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2.0» и «Пирамида 2.0», в состав которого входят модули, указанные в таблице 1.1, 1.2. ПО обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО.

Таблица 1.1 – Идентификационные данные ПО «Пирамида 2.0» (Шкаф-1 АИИС КУЭ)

Габлица 1.1 – Идентификационные данные ПО «Пирамида 2.0» (Шкаф-1 АИИС КУЭ)					
Наименование программного обеспечения	«Пирамида 2.0»				
Номер версии ПО (идентификационный номер)	не ниже 8.0				
Цифровой идентификатор	EB1984E0072ACFE1C797269B9DB15476				
Идентификационное наименование	BinaryPackControls.dll				
Цифровой идентификатор	E021CF9C974DD7EA91219B4D4754D5C7				
Идентификационное наименование	CheckDataIntegrity.dll				
Цифровой идентификатор	BE77C5655C4F19F89A1B41263A16CE27				
Идентификационное наименование	ComIECFunctions.dll				
Цифровой идентификатор	AB65EF4B617E4F786CD87B4A560FC917				
Идентификационное наименование	ComModbusFunctions.dll				
Цифровой идентификатор	EC9A86471F3713E60C1DAD056CD6E373				
Идентификационное наименование	ComStdFunctions.dll				
Цифровой идентификатор	D1C26A2F55C7FECFF5CAF8B1C056FA4D				
Идентификационное наименование	DateTimeProcessing.dll				
Цифровой идентификатор	B6740D3419A3BC1A42763860BB6FC8AB				
Идентификационное наименование	SafeValuesDataUpdate.dll				
Цифровой идентификатор	61C1445BB04C7F9BB4244D4A085C6A39				
Идентификационное наименование	SimpleVerifyDataStatuses.dll				
Цифровой идентификатор	EFCC55E91291DA6F80597932364430D5				
Идентификационное наименование	SummaryCheckCRC.dll				
Цифровой идентификатор	013E6FE1081A4CF0C2DE95F1BB6EE645				
Идентификационное наименование	ValuesDataProcessing.dll				
Алгоритм вычисления цифрового идентификатора ПО	MD5				

Таблица 1.2 – Идентификационные данные ПО «Пирамида 2.0» (Шкаф-2 АИИС КУЭ)

Габлица 1.2 – Идентификационные данные ПО «Пирамида 2.0» (Шкаф-2 АИИС КУЭ)					
Наименование программного обеспечения	«Пирамида 2.0»				
Номер версии ПО (идентификационный номер)	не ниже 8.0				
Цифровой идентификатор	EB1984E0072ACFE1C797269B9DB15476				
Идентификационное наименование	BinaryPackControls.dll				
Цифровой идентификатор	E021CF9C974DD7EA91219B4D4754D5C7				
Идентификационное наименование	CheckDataIntegrity.dll				
Цифровой идентификатор	BE77C5655C4F19F89A1B41263A16CE27				
Идентификационное наименование	ComIECFunctions.dll				
Цифровой идентификатор	AB65EF4B617E4F786CD87B4A560FC917				
Идентификационное наименование	ComModbusFunctions.dll				
Цифровой идентификатор	EC9A86471F3713E60C1DAD056CD6E373				
Идентификационное наименование	ComStdFunctions.dll				
Цифровой идентификатор	D1C26A2F55C7FECFF5CAF8B1C056FA4D				
Идентификационное наименование	DateTimeProcessing.dll				
Цифровой идентификатор	B6740D3419A3BC1A42763860BB6FC8AB				
Идентификационное наименование	SafeValuesDataUpdate.dll				
Цифровой идентификатор	61C1445BB04C7F9BB4244D4A085C6A39				
Идентификационное наименование	SimpleVerifyDataStatuses.dll				
Цифровой идентификатор	EFCC55E91291DA6F80597932364430D5				
Идентификационное наименование	SummaryCheckCRC.dll				
Цифровой идентификатор	013E6FE1081A4CF0C2DE95F1BB6EE645				
Идентификационное наименование	ValuesDataProcessing.dll				
Алгоритм вычисления цифрового идентификатора ПО	MD5				

 Π О «Пирамида 2.0» и Π О «Пирамида 2.0» не влияют на метрологические характеристики измерительных каналов (далее – ИК) АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав ИК АИИС КУЭ и их основные метрологические характеристики

×		Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК	Наименование ИК	TT	ТН	Счётчик	Контроллер многофункц иональный/ УСВ	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	ВЛ 220 кВ Эксперименталь ная ТЭС-	TG Кл. т. 0,2S Ктт 1200/1	НДКМ Кл. т. 0,2 Ктн 220000:√3/100:√3	ТЕ3000.08 Кл. т. 0,2S/0,5	Кл. т. 0,2S/0,5 Рег. № 77036-19 ТЕ3000.08 Кл. т. 0,2S/0,5 Рег. №	активная	±0,6	±1,5
	Новошахтинская	Рег. № 75894-19	Рег. № 60542-15	Рег. № 77036-19		реактивная	±1,3	±2,6
2	ВЛ 220 кВ Шахты-	ТG Кл. т. 0,2S	НДКМ Кл. т. 0,2			активная	±0,6	±1,5
	Новошахтинская	Ктт 1200/1 Рег. № 75894-19	Ктн 220000:√3/100:√3 Рег. № 60542-15			реактивная	±1,3	±2,6
3	В-1 220 кВ Эксперименталь	TG Кл. т. 0,2S	НДКМ Кл. т. 0,2 Кл. т. 0,2S/0,5	ТЕ3000.08 Кл. т. 0,2S/0,5	Per. № 84823-22	активная	±0,6	±1,5
	ная ТЭС	Ктт 1200/1 Рег. № 75894-19	Ктн 220000:√3/100:√3 Рег. № 60542-15	Рег. № 77036-19		реактивная	±1,3	±2,6
4	В-2 220 кВ	ТЕ3000.08 Кл. т. 0,2S/0,5		активная	±0,6	±1,5		
	ная ТЭС	* KTT /		реактивная	±1,3	±2,6		

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
5	В-1 220 кВ	TG Кл. т. 0,2S	НДКМ Кл. т. 0,2	ТЕ3000.08 Кл. т. 0,2S/0,5		активная	±0,6	±1,5
3	Шахты	Ктт 1200/1 Рег. № 75894-19	Ктн 220000:√3/100:√3 Рег. № 60542-15	Per. № 77036-19	SM160- 02M	реактивная	±1,3	±2,6
6	В-2 220 кВ	TG Кл. т. 0,2S	НДКМ Кл. т. 0,2	ТЕ3000.08 Кл. т. 0,2S/0,5 Рег. № 77036-19	Рег. № 71337-18/	активная	±0,6	±1,5
0	Шахты	Ктт 1200/1 Рег. № 75894-19	Ктн 220000:√3/100:√3 Рег. № 60542-15		УСВ-3 Рег. №	реактивная	±1,3	±2,6
7	ВУПГ 220 кВ	TG Кл. т. 0,2S	НДКМ Кл. т. 0,2	ТЕ3000.08 Кл. т. 0,2S/0,5	84823-22	активная	±0,6	±1,5
/ B31	D3111 220 KD	Ктт 400/1 Рег. № 75894-19	Ктн 220000:√3/100:√3 Рег. № 60542-15	KTH 220000:\\3/100:\\3 Per \No 77036_19		реактивная	±1,3	±2,6
Пределы смещений шкалы времени СОЕВ АИИС КУЭ относительно национальной шкалы времени UTC(SU), с ±5								

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд I=0.02 $I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 7 от 0 °C до +40 °C.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 5 Допускается замена УСВ на аналогичные утвержденных типов.
- 6 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке с внесением изменений в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение		
1	2		
Количество ИК	7		
Нормальные условия:			
параметры сети:			
- напряжение, % от Uном	от 99 до 101		
- ток, % от Іном	от 100 до 120		
- частота, Гц	от 49,85 до 50,15		
- коэффициент мощности соsф	0,9		
- температура окружающей среды, °С	от +21 до +25		
Условия эксплуатации:			
параметры сети:			
- напряжение, % от U _{ном}	от 90 до 110		
- Tok, $\%$ ot I_{hom}	от 2 до 120		
- коэффициент мощности	от 0.5 _{инд} до 0.8 _{емк}		
- частота, Гц	от 49,6 до 50,4		
- температура окружающей среды для ТТ и ТН, °С	от -45 до +40		
- температура окружающей среды в месте расположения			
счетчиков, °С	от -40 до +70		
- температура окружающей среды в месте расположения			
сервера, °С	от +10 до +30		
Надежность применяемых в АИИС КУЭ компонентов:			
Счетчики:			
- среднее время наработки на отказ, ч, не менее:	220000		
- среднее время восстановления работоспособности, ч	2		
Сервер:			
- среднее время наработки на отказ, ч, не менее	50000		
- среднее время восстановления работоспособности, ч	1		
УСВ:			
- среднее время наработки на отказ, ч, не менее	180000		
- среднее время восстановления работоспособности, ч	2		
SM160-02M:			
- среднее время наработки на отказ, ч, не менее	120000		
- среднее время восстановления работоспособности, ч	3		

Продолжение таблицы 3

1	2
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	114
- при отключении питания, лет, не менее	45
SM160-02M:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, сут., не менее	45
- сохранение информации при отключении питания, лет, не	10
менее	
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и SM160-02M с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал SM160-02M:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и SM160-02M;
 - пропадание и восстановление связи со счетчиком.
- журнал сервера БД:
 - параметрирования;
 - изменения значений результатов измерений;
 - пропадание напряжения;
 - коррекция времени в счетчике, SM160-02M и сервере БД;
 - замена счетчика;
 - пропадание и восстановление связи с SM160-02M и счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - -SM160-02M;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - -SM160-02M;
 - сервера.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- SM160-02M (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.	
Трансформатор тока	TG	21	
Трансформатор напряжения	НДКМ	7	
Счётчик электрической энергии многофункциональный	TE3000.08	7	
Устройство синхронизации времени	УСВ-3	1	
Контроллер многофункциональный	Интеллектуальный контроллер SM160-02M	2	
Программное обеспечение	«Пирамида 2.0»	2	
Методика поверки	-	1	
Паспорт-Формуляр	ЕГ.01.149-ПΦ	1	

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «НЗНП», аттестованном ООО «Спецэнергопроект» г. Москва, уникальный номер записи в реестре аккредитованных лиц № RA.RU.312236.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ Р 59793-2021 «Информационные технологии. Комплекс стандартов на автоматизированные системы. Стадии создания»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Акционерное общество «Новошахтинский завод нефтепродуктов» (АО «НЗНП») ИНН 6151012111

Юридический адрес: 346367, Ростовская обл., м.р-н Красносулинский, сп. Киселевское, тер автомобильной дороги общего пользования федерального значения A-270, км 882-й, зд. 1

Телефон: +7 (86369) 5-15-00

E-mail: kanc@nznp.ru

Изготовитель

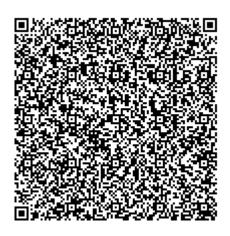
Общество с ограниченной ответственностью «ЕЭС-Гарант» (ООО «ЕЭС-Гарант»)

ИНН 5024173259

Адрес: 143421, Московская обл., г.о. Красногорск, тер. Автодорога Балтия, км 26-й,

д. 5, стр. 3, оф. 4012

Телефон: +7 (495) 980-59-00 Факс: +7 (495) 980-59-08 E-mail: info@ies-garant.ru Web-сайт: www.ies-garant.ru


Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект» (ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, эт. 4, помещ. І, ком. 6, 7

Телефон: +7 (495) 410-28-81 E-mail: info@sepenergo.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312429.

