УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «13» сентября 2024 г. № 2225

 Лист № 1

 Регистрационный № 93198-24
 Всего листов 9

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ПНТЗ» (2-я очередь)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ПНТЗ» (2-я очередь) (далее — АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (далее – ИИК), которые включают в себя трансформаторы тока (далее – ТТ), трансформаторы напряжения (далее – ТН) и счетчики активной и реактивной электроэнергии (далее – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень — информационно-вычислительный комплекс электроустановки (далее — ИВКЭ), включающий в себя устройства сбора и передачи данных ЭКОМ-3000 (далее — УСПД), осуществляющие сбор данных от счетчиков, подключенных к входам соответствующего УСПД, каналообразующую аппаратуру

3-й уровень – информационно-вычислительный комплекс (далее – ИВК) АО «ПНТЗ», включающий в себя каналообразующую аппаратуру, сервер баз данных (далее –БД), АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее – ПО) ПК «Энергосфера».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС» и другие организации.

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется

по средним за период значениям активной и полной мощности. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0.02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
- средняя на интервале времени 30 мин активная (реактивная) электрическая мощность. Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных по проводным линиям либо с использованием стационарных терминалов сотовой связи на верхний уровень системы (сервер БД).

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Отображение информации на мониторах APM и передача данных в организации — участники оптового рынка электрической энергии и мощности, в том числе в АО «АТС», АО «СО ЕЭС» и смежным субъектам, через каналы связи в виде XML-файлов установленных форматов.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), включающую в себя часы УСПД, сервера БД и счетчиков электроэнергии, подключенных к УСПД. СОЕВ АИИС КУЭ построена на базе приемника ГЛОНАСС/GPS, встроенного в УСПД. Время УСПД синхронизировано с временем приёмника, сличение ежесекундное. УСПД осуществляет коррекцию времени сервера БД и счётчиков. Сличение времени сервера БД со временем УСПД и корректировка времени выполняется при расхождении времени сервера БД и УСПД на ± 1 с.

Сличение времени счётчиков с временем УСПД происходит при каждом опросе счётчиков. Коррекция времени счетчиков выполняется при расхождении времени счетчиков с временем УСПД на ± 3 с.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Нанесение знака поверки на АИИС КУЭ не предусмотрено.

Маркировка заводского номера и даты выпуска АИИС КУЭ наносится на этикетку, расположенную на коммутационном шкафе, типографическим способом. Дополнительно заводской номер указывается в паспорте-формуляре.

Заводской номер АИИС КУЭ: 02.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Идентификационные данные ПО

Идентификационные признаки	Значение		
идентификационные признаки			
И полити функции и и и и и и и и и и и и и и и и и и	ПК «Энергосфера»		
Идентификационное наименование ПО	Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ. Уровень защиты ПО от непреднамеренных и преднамеренных изменений — «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

K	Наименование ИК	Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК		TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основная погрешность, %	Погре- шность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
7	ПС 110 кВ Филиал НТЗ, ЗРУ-6 кВ, 1 СШ 6 кВ, яч.14, ф.Запрудный	ТПОЛ Кл. т. 0,5S Ктт 200/5 Рег. № 47958-16	НАМИ-10-95УХЛ2 Кл. т. 0,5 Ктн 6000/100 Рег. № 20186-00	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Рег. № 36697-17	ЭКОМ-3000 Per. № 17049-09	активная	±1,2 ±2,9	±3,4 ±5,8
8	ПС 110 кВ Филиал НТЗ, ЗРУ-6 кВ, 2 СШ 6 кВ, яч.22, ф.Регул	ТПОЛ Кл. т. 0,5S Ктт 150/5 Рег. № 47958-16	НАМИ-10-95УХЛ2 Кл. т. 0,5 Ктн 6000/100 Рег. № 20186-00	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Рег. № 36697-17		активная	±1,2 ±2,9	±3,4 ±5,8
120	ЦРП-1 6 кВ, РУ-6 кВ, 1 СШ 6 кВ, яч.9, ф.ДВВС-1	ТПОЛ Кл. т. 0,5S Ктт 200/5 Рег. № 47958-16	НТМИ-6-66 Кл. т. 0,5 Ктн 6000/100 Рег. № 2611-70	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Рег. № 36697-17		активная реактивная	±1,2 ±2,8	±3,4 ±7,2

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
121	ЦРП-1 6 кВ, РУ-6 кВ, 2 СШ 6 кВ, яч.26, ф.ДВВС-2	ТПОЛ Кл. т. 0,5S Ктт 200/5 Рег. № 47958-16	НТМИ-6-66 Кл. т. 0,5 Ктн 6000/100 Рег. № 2611-70	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Рег. № 36697-17	ЭКОМ-3000 Per. № 17049-09	активная реактивная	±1,2 ±2,8	±3,4 ±7,2
Пределы допускаемой погрешности (Δ) СОЕВ АИИС КУЭ UTC (SU), с						土	5	

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд I=0.02 $I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 7, 8, 120, 121 от 0 °C до +40 °C.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 5 Допускается замена УСПД на аналогичные утвержденных типов.
- 6 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке с внесением изменений в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

аблица 3 – Основные технические характеристики ИК	2	
Наименование характеристики	Значение	
Количество ИК	4	
Нормальные условия:		
параметры сети:		
$-$ напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle{\mathrm{HOM}}}$	от 99 до 101	
$-$ Tok, $\%$ ot I_{hom}	от 100 до 120	
– частота, Гц	от 49,85 до 50,15	
– коэффициент мощности соѕф	0,9	
– температура окружающей среды, °С	от +21 до +25	
Условия эксплуатации:		
параметры сети:		
$-$ напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle{\mathrm{HOM}}}$	от 90 до 110	
$-$ Tok, $\%$ ot I_{hom}	от 2 до 120	
– коэффициент мощности соѕф	от $0,5$ инд до $0,8$ емк	
– частота, Гц	от 49,6 до 50,4	
– температура окружающей среды для TT и TH, °C	от –40 до +70	
 температура окружающей среды в месте расположения 		
счетчиков, °С	от –40 до +60	
 температура окружающей среды в месте расположения 		
сервера, °С	от +10 до +30	
Надежность применяемых в АИИС КУЭ компонентов:		
Счетчики:		
– среднее время наработки на отказ, ч, не менее	220000	
 среднее время восстановления работоспособности, ч 	2	
УСПД:		
 среднее время наработки на отказ, ч, не менее 	75000	
 среднее время восстановления работоспособности, ч 	24	
Сервер:		
 среднее время наработки на отказ, ч, не менее 	70000	
 среднее время восстановления работоспособности, ч 	1	
Глубина хранения информации		
Счетчики:		
 тридцатиминутный профиль нагрузки в двух 	114	
направлениях, сут., не менее		
 при отключении питания, лет, не менее 	45	
УСПД:		
 суточные данные о тридцатиминутных приращениях 		
электропотребления по каждому каналу и электропотребление за		
месяц по каждому каналу, сут., не менее	45	
 сохранение информации при отключении питания, лет, не 		
менее	10	
Сервер:		
 хранение результатов измерений и информации состояний 		
средств измерений, лет, не менее	3,5	

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист паспорта-формуляра на АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформатор тока	ТПОЛ	12
Трансформатор напряжения	НАМИ-10-95УХЛ2	2
Трансформатор напряжения	НТМИ-6-66	2
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.01	4
Устройство спора и передачи данных	ЭКОМ-3000	1
Программное обеспечение	ПК «Энергосфера»	1
Паспорт-Формуляр	ЕГ.01.02-ПФ	1

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «ПНТЗ» (2-я очередь), аттестованном ООО «Спецэнергопроект», уникальный номер записи в реестре аккредитованных лиц № RA.RU.312236.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ Р 59793-2021 «Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Акционерное общество «Первоуральский новотрубный завод» (АО «ПНТЗ») ИНН 662500427

Юридический адрес: 623100, Свердловская обл., г. Первоуральск, ул. Торговая, д. 1

Изготовитель

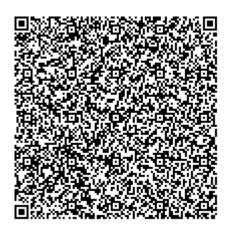
Общество с ограниченной ответственностью «ЕЭС-Гарант» (ООО «ЕЭС-Гарант») ИНН 5024173259

Адрес: 143421, Московская обл., г.о. Красногорск, тер. Автодорога Балтия, км 26-й,

д. 5, стр. 3, оф. 4012

Телефон: 8 (495) 980-59-00 Факс: 8 (495) 980-59-08

Испытательный центр


Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, эт. 4, помещ. І, ком. 6, 7

Телефон: 8 (495) 410-28-81 E-mail: info@sepenergo.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312429.

