УТВЕРЖЛЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «30» сентября 2024 г. № 2293

Лист № 1 Всего листов 5

Регистрационный № 93340-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрометры рентгенофлуоресцентные волнодисперсионные S8 TIGER

Назначение средства измерений

Спектрометры рентгенофлуоресцентные волнодисперсионные S8 TIGER (далее - спектрометры) предназначены для измерений массовой доли элементов в твердых, сыпучих и жидких материалах, веществ, осажденных на фильтрах.

Описание средства измерений

Принцип действия спектрометров основан на регистрации интенсивности вторичного рентгеновского излучения образца, возбуждаемого излучением рентгеновской трубки. Возбужденное в образце вторичное (флуоресцентное характеристическое) излучение попадает на кристалл-анализатор (монокристалл, срезанный по определенной кристаллографической плоскости, или многослойные структуры). В результате дифракции на кристалл-анализаторе излучение разлагается в спектр (в соответствии с уравнением Вульфа-Брэгга). По положению и интенсивности линий в спектре проводится определение массовой доли элементов.

Конструктивно спектрометры выполнены в виде стационарного напольного прибора, состоящего из рентгеновской трубки с источником питания (генератором), камеры для измерения с автоматическим или ручным устройством загрузки образцов, детекторным блоком и усилителями, системы разложения в спектр флуоресцентного излучения, системы регистрации интенсивности флуоресцентного излучения, системы охлаждения.

В качестве источника рентгеновского излучения в спектрометре используется рентгеновская трубка. В базовой комплектации в спектрометрах используется рентгеновская трубка с родиевым анодом и максимальной мощностью 4 кВт (U_{max}=60 кВ, I_{max}=170 мА), в качестве опции спектрометры могут оснащаться рентгеновскими трубками с хромовым или молибденовым анодом. Рабочая мощность спектрометра может отличаться в зависимости от установленного высоковольтного напряжения и может быть 1 кВт, 3 кВт и 4 кВт. Спектрометры оснащаются восьмипозиционным сменщиком кристалл-анализаторов. Выбор кристалланализаторов зависит от круга интересующих элементов (от бериллия до урана). В зависимости от предполагаемых задач спектрометры оснащаются проточным пропорциональным и (или) сцинтилляционным детекторами. Для анализа жидких проб и порошков спектрометр может оснащаться системой гелиевой (азотной) продувки камеры для образцов с возможностью настройки скорости потока газа. Управление процессом измерения и контроль состояния прибора осуществляется посредством встроенного сенсорного экрана или внешнего компьютера. Конструкция спектрометров обеспечивает безопасные условия работы. При максимальном напряжении и токе рентгеновской трубки мощность эквивалентной дозы рассеянного рентгеновского излучения на расстоянии 10 см от внешней поверхности корпуса не превышает 1 мкЗв/ч.

Каждый экземпляр спектрометра имеет серийный номер, расположенный на паспортной табличке на задней стороне корпуса спектрометров. Серийный номер имеет цифровой формат и наносится типографским или иным пригодным способом.

Нанесение знака поверки на спектрометры не предусмотрено.

Общий вид спектрометров и место нанесения серийного номера представлены на рисунке 1. На рисунке 2 представлен вид паспортной таблички.

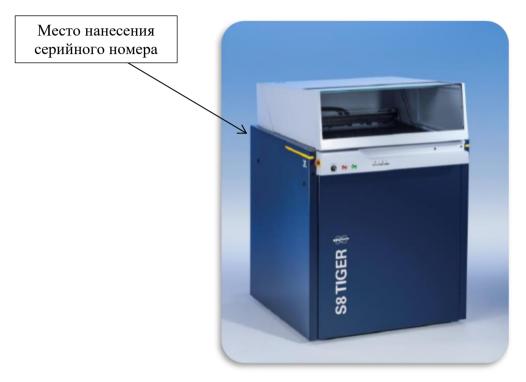


Рисунок 1 – Общий вид спектрометра с указанием места нанесения серийного номера

Рисунок 2 – Вид паспортной таблички спектрометра

Пломбирование спектрометров не предусмотрено. Конструкция спектрометров обеспечивает ограничение доступа к частям спектрометра, несущим первичную измерительную информацию, и местам настройки (регулировки).

Программное обеспечение

Спектрометры оснащены программным обеспечением, позволяющим контролировать процесс измерений, осуществлять сбор экспериментальных данных, обрабатывать и сохранять полученные результаты, передавать результаты измерений на персональный компьютер, принтер или локальную сеть.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «средний» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО спектрометров приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	SPECTRAplus
Номер версии (идентификационный номер) ПО	4.x.x*
Цифровой идентификатор ПО	_
*х - обозначение номера версии метрологически незначимой части ПС значения от 0 до 99.), может принимать

Метрологические и технические характеристики

Таблица 2 — Метрологические характеристики

Наименование характеристики	Значение	
Диапазон определяемых элементов	от Ве (Бериллий)	
	до U (Уран)	
Предел допускаемого относительного среднего квадратического отклонения выходного сигнала $^{1)}$, %	0,5	
Чувствительность (скорость счета на линии Fe $K\alpha$) ¹⁾ , кимп/(с·мА·%), не менее	1	
1) Для железа в стандартном образце ГСО 11036-2018 с массовой долей железа от 0,90 % до		
1,10 %.		

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Максимальный ток рентгеновской трубки, мА	170
Максимальная мощность рентгеновской трубки, кВт	4
Параметры электропитания:	
- напряжение переменного тока, В	от 208 до 240
- частота переменного тока, Гц	от 47 до 63
Условия эксплуатации	
- температура окружающего воздуха, °С	от +15 до +32
- относительная влажность окружающего воздуха (при 25°С), %, не	80
более	
Габаритные размеры, см, не более:	
- длина	135
- высота	104
- ширина	84
Масса ¹⁾ , кг, не более	476
1) Без системы охлаждения	

Знак утверждения типа

наносится на титульный лист руководства пользователя типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Спектрометр рентгенофлуоресцентный волнодисперсионный	S8 TIGER	1 шт.
Руководство пользователя	РΠ	1 экз.
SPECTRAplus Пакет программного обеспечения версия 4.0	-	1 экз.
Методика поверки	-	1 экз.

Сведения о методиках (методах) измерений

приведены в документе «Спектрометры рентгенофлуоресцентные волнодисперсионные S8 TIGER. Руководство пользователя», раздел 4.3 «Измерение образца».

При использовании в сфере государственного регулирования обеспечения единства измерений средство измерений применяется в соответствии с аттестованными методиками (методами) измерений.

Нормативные документы, устанавливающие требования к средству измерений

Техническая документация изготовителя «BRUKER AXS GmbH», Германия;

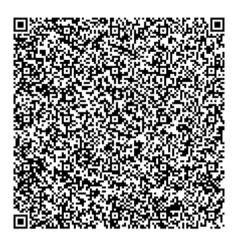
Приказ Росстандарта от 19 февраля 2021 г. № 148 «Об утверждении Государственной поверочной схемы для средств измерений содержания неорганических компонентов в жидких и твердых веществах и материалах».

Правообладатель

«BRUKER AXS GmbH», Германия

Адрес: Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany

Изготовитель


«BRUKER AXS GmbH», Германия

Адрес: Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany

Испытательный центр

Уральский научно-исследовательский институт метрологии — филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии имени Д.И.Менделеева» (УНИИМ — филиала ФГУП «ВНИИМ им. Д.И.Менделеева»)

Адрес: 620075, г. Екатеринбург, улица Красноармейская, д. 4 Уникальный номер записи в реестре аккредитованных лиц № RA.RU.311373.

