УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «21» октября 2024 г. № 2506

Лист № 1 Всего листов 21

Регистрационный № 93548-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии многофункциональные СЕ

Назначение средства измерений

Счетчики электрической энергии многофункциональные СЕ (далее по тексту – счетчики) предназначены для измерения активной и реактивной электрической энергии, параметров силы тока, напряжения, активной и реактивной мощности, частоты сети, угла сдвига фаз (для трехфазного исполнения), коэффициентов мощности, организации многотарифного учета электроэнергии, и контроля качества электроэнергии.

Описание средства измерений

Принцип действия счетчиков основан на измерении мгновенных значений входных сигналов тока и напряжения аналого-цифровым преобразователем, с последующим вычислением среднеквадратических значений токов и напряжений, активной, реактивной мощности и энергии, углов сдвига фазы, коэффициента мощности и частоты.

Счетчики могут использоваться автономно, или в составе автоматизированных информационно-измерительных систем коммерческого учета электроэнергии АИИС КУЭ (АСКУЭ).

Счетчики имеют в своем составе микроконтроллер, АЦП, датчики тока и напряжения, энергонезависимую память данных и встроенные часы реального времени.

Счетчики оснащены, в зависимости от исполнения:

- оптическим интерфейсом в соответствии с ГОСТ ІЕС 61107-2011;
- датчиком магнитного поля;
- детектором ВЧ электромагнитного поля;
- ЖКИ (за исключением сплит-счетчиков);
- подсветкой ЖКИ (при наличии ЖКИ);
- кнопками управления (за исключением сплит-счетчиков);
- возможностью подключения сменного модуля связи;
- электронной пломбой отсека сменного модуля связи;
- электронной пломбой кожуха счетчика;
- электронной пломбой крышки зажимов;
- реле управления нагрузкой (для счетчиков непосредственного включения);
- блокиратором реле управления нагрузкой (для счетчиков непосредственного включения);
 - индикатором функционирования счетчика (сеть);
 - оптические испытательные выходы;
 - электрические испытательные выходы (телеметрия);
 - реле управления нагрузкой (для счетчиков непосредственного включения);

- одним или двумя отсеками для установки сменной батареи;
- встроенным литиевым элементом.

Опционально счетчик может быть оснащен одним или несколькими дополнительными встроенными интерфейсами связи согласно таблице 1, а также иметь одну или несколько дополнительных функций согласно таблице 2.

Счетчики могут вести измерения активной электроэнергии в диапазонах сдвига фаз между напряжением и током следующим образом:

φ=от 90° до	$0_{\rm o}$	1 квадрант (А1)	cos φ=oτ	0 до	1	(инд.)
φ=от 180° до	90°	2 квадрант (А2)	соs φ=от	- 1 до	0	(емк.)
φ=от 270° до	180°	3 квадрант (А3)	cos φ=ot	0 до	- 1	(инд.)
φ=от 0° до	- 90°	4 квадрант (А4)	cos φ=ot	1 до	0	(емк.)

Примечание: A1, A2, A3, A4 — условные наименования активной составляющей вектора полной энергии первого, второго, третьего и четвертого квадрантов соответственно.

Счетчики могут вести измерения реактивной электроэнергии в диапазонах сдвига фаз между напряжением и током следующим образом:

φ=от 0° до	90°	1 квадрант (R1)	sin φ=oτ	0 до	1	(инд.)
φ=от 90° до	180°	2 квадрант (R2)	sin φ=oτ	1 до	0	(емк.)
φ=от 180° до	270°	3 квадрант (R3)	sin φ=oτ	0 до	- 1	(инд.)
φ=от 270° до	0_{o}	4 квадрант (R4)	sin φ=oτ	1 до	0	(емк.)

Примечание: R1, R2, R3, R4 — условные наименования реактивной составляющей вектора полной энергии первого, второго, третьего и четвертого квадрантов соответственно.

В счетчиках предусмотрены два настраиваемых канала учета активной энергии с условными наименованиями:

«А+» - прямое направление, расход, потребление, импорт.

«А-» - обратное направление, приход, отдача, экспорт.

В зависимости от настройки, накопление активной энергии выполняется по следующим алгоритмам:

1. «Двунаправленный учет»

$$A + = A1 + A4$$

 $A - = A2 + A3$

2. «Однонаправленный учет» (накопление по модулю)

$$A + = A1 + A2 + A3 + A4$$

$$A - = 0$$

Счетчик в зависимости от исполнения измеряет следующие параметры:

- активная электроэнергия в двух направлениях (приём, отдача);
- реактивная электроэнергия в двух направлениях (положительная, отрицательная);
- напряжение фазное;
- напряжение линейное (для трехфазных счетчиков);
- ток (для каждой фазы);
- ток в нулевом проводе (при наличии датчика тока в нейтральном канале);
- частота сети;
- активная, реактивная и полная мощность (для каждой фазы и суммарная величина);
- коэффициент активной мощности (cos φ);
- соотношение реактивной и активной мощности (tg φ);
- небаланс токов в фазных и нулевом канале (при наличии датчика тока в нейтральном канале).

В зависимости от исполнения, счетчик измеряет и контролирует следующие показатели качества электроэнергии (далее - ПКЭ) в соответствии с классом «S» характеристик процесса измерений по ГОСТ 30804.4.30-2013:

- положительное и отрицательное отклонение напряжения в точке измерения электрической энергии;
 - отклонение частоты, диапазон измерения частоты от 47,5 до 52,5 Гц;
 - перенапряжения;
 - провалы напряжения;
 - прерывания напряжения;
 - коэффициент несимметрии напряжений по обратной последовательности.

Счетчик фиксирует нарушения следующих контролируемых ПКЭ за настраиваемый интервал времени:

- события нарушения параметра отклонения напряжения;
- события нарушения параметра отклонения частоты;
- события нарушения параметра коэффициент несимметрии напряжений по обратной последовательности;
- события перенапряжения: фаза(ы), дата/время начала и окончания перенапряжения, длительность перенапряжения и максимальное значение напряжения при перенапряжении;
- события провала напряжения: фаза(ы), дата/время начала и окончания провала напряжения, длительность провала напряжения и минимальное значение напряжения при провале напряжения;
- события прерывания напряжения: дата/время начала и окончания прерывания напряжения, длительность прерывания напряжения.

Счетчик фиксирует нарушения следующих контролируемых ПКЭ за расчетный период:

- суммарную продолжительность положительного и отрицательного отклонения напряжения в точке измерения электрической энергии.

Счетчик фиксирует нарушения следующих индивидуальных ПКЭ за расчетный период:

- суммарную продолжительность времени превышения положительного и отрицательного отклонения уровня напряжения в точке измерения электрической энергии;
- количество фактов положительного отклонения напряжения в точке измерения электрической энергии.

Счетчик обеспечивает разграничение доступа и регистрации событий информационной безопасности.

Счетчик обеспечивает формирование профиля принятой и отданной активной и реактивной энергии (мощности) с программируемым интервалом времени интегрирования в диапазоне от 1 до 60 мин (из ряда 1, 5, 15, 30, 60 минут, в зависимости от исполнения ряд может быть расширен) и периодом хранения не менее 90 суток (при времени интегрирования 30 минут). Счетчик должен обеспечивать глубину хранения профиля для 60-ти минутных интервалов времени не менее 180 суток.

Счетчик обеспечивает формирование профиля значений активной и реактивной электрической энергии (прием, отдача) нарастающим итогом суммарно и раздельно по тарифам, фиксированных на начало каждых суток с циклической перезаписью, глубина хранения не менее 123 суток.

Счетчик обеспечивает формирование профиля значений активной и реактивной электроэнергии (приём, отдача) нарастающим итогом, а также запрограммированных параметров на начало текущего расчетного периода.

Счетчики ведут измерение и учет времени и даты с возможностью задания

автоматического перехода на летнее/зимнее время.

Счетчики ведут измерение и учет потребленной или потребленной и отпущенной активной и реактивной (R+ и R-) электрической энергии суммарно и по тарифам, указанным в активных тарифных программах в соответствии с сезонными недельными расписаниями и суточными программами смены тарифных зон (тарифными программами). Сезонное недельное расписание может предусматривать различные суточные тарифные программы для различных дней недели. В счетчике также предусматривается назначение тарифных программ для исключительных (особых) дней, а также, в зависимости от исполнения, назначение тарифов или тарифных программ по заданным событиям.

Счетчики в зависимости от исполнения обеспечивают учет, фиксацию и хранение, измерение, индикацию на жидкокристаллическом индикаторе и выдачу по интерфейсам:

- количества только потребленной или потребленной и отпущенной активной и реактивной электроэнергии нарастающим итогом суммарно и раздельно по тарифам;
- количества только потребленной или потребленной и отпущенной активной и реактивной электроэнергии нарастающим итогом суммарно по каждой фазе.

Счетчики обеспечивают фиксацию в журналах с сохранением даты и времени следующих событий: корректировок времени, изменений настроек счетчика, фактов вскрытий клеммой крышки и корпуса, результатов самодиагностики, отклонений параметров сети и отклонений показателей качества электроэнергии, индивидуальных параметров электроснабжения.

Для обмена информацией по оптическому интерфейсам, в зависимости от исполнения счетчика, могут использоваться протоколы DLP, SMP, Mod-BUS, а также протоколы соответствущие стандартам: IEC 62056 (DLMS/COSEM) (спецификация СПОДЭС, IDIS, CAS), МЭК 60870-5-104-2004, МЭК 61850, ПИРС.

Счётчик в зависимости от исполнения обеспечивает ведение журналов событий с общим количеством записей не менее 500 записей.

Внешний вид счетчиков приведен на рисунках 2 – 7, с приведением мест пломбирования поверителя (ПП), мест пломбирования электроснабжающей организации (ЭО), мест нанесения знака утверждения типа, мест нанесения заводского номера счетчика.

Заводской номер наносится на корпус счетчиков лазерной гравировкой в виде цифрового кода.

Знак поверки наносится на пломбу в виде оттиска знака поверки навешиваемую или устанавливаемую в местах, указанных на рисунках 2-7, а также в паспорта.

Структура условного обозначения приведена на рисунке 1.

CE X XX	XXX .	X	x z	Χ.	X .	XXX .	XXX	XXX Обозначение дополнительных особенностей, не относящихся к метрологическим характеристикам. (обозначение согласно руководству по эксплуатации). Дополнительные функции в соответствии с таблицей Установленные интерфейсы связи в соответствии с
								таблицей 1. Количество измерительных элементов
								(для 3 эл. трехфазного – не указывается).
								Код диапазона токов Номинальный/базовый (максимальный): $3-5\ (10)\ A;$ $6-5\ (100)\ A;$ $9-5\ (80)\ A.$
								Код номинального напряжения: $0-57,7\mathrm{B}\ \mathrm{u}\ 3\times57,7/100;$ $4-230\mathrm{B}\ \mathrm{u}\ 3\times230/400.$
								Код класса точности по активной/реактивной энергии: $4-0.2S/0.5$; $5-0.5S/0.5$; $6-0.5S/1.0$; $7-1.0/1.0$; $8-1.0/2.0$.
								Тип и номер корпуса: S10 – для однофазного счетчика для крепления на 3 точки (на стену); C10 – для однофазного счетчика для сплит счетчиков; R10 – для однофазного счетчика для крепления на DIN-рейку; S30 – для трехфазного счетчика для крепления на 3 точки (на стену); C30 – для трехфазного счетчика для сплит счетчиков;
								10 - Номер модели.
								Количество фаз: 2 - Однофазный счетчик; 3 - Трехфазный счетчик.

Рисунок 1 — Структура условного обозначения счетчика

Таблица 1 – Обозначение установленных интерфейсов связи

Обозначение	Интерфейс связи
A	RS485
Bx	Bluetooth (BLE), где x – вариант антенны (нет символа – встроенная, 1 -
	внешняя, 2 - встроенная и внешняя)
C	Картоприемник
E	Ethernet
F	FLASH карта
Gx	GSM, где x – вариант антенны (нет символа – встроенная, 1 - внешняя, 2 -
	встроенная и внешняя)
K	Клавиатура
Lx	LoRa, где x – вариант антенны (нет символа – встроенная, 1 - внешняя, 2 -
	встроенная и внешняя)
M	MBUS
N	NFC
P	PLC
Rx	Радиоинтерфейс, где х – вариант антенны (нет символа – встроенная, 1 -
	внешняя, 2 - встроенная и внешняя)
U	USB
Wx	Wi-Fi, где x – вариант антенны (нет символа – встроенная, 1 - внешняя, 2 -
	встроенная и внешняя)
Zx	ZigBee, где x – вариант антенны (нет символа – встроенная, 1 - внешняя, 2
	- встроенная и внешняя)

Таблица 2 – Обозначение дополнительных функций

,	T 1					
Обозначение	Дополнительные функции					
D	Отсутствие в комплекте поставки выносного дисплея для СПЛИТ					
	исполнений					
S	Наличие дискретных выходов (реле сигнализации)					
T	Наличие дискретных импульсных входов с низким напряжением 24В					
	постоянного тока					
Ι	Наличие дискретных входов с высоким напряжением 230В переменного					
	тока					

Рисунок 2 – Внешний вид счетчика в корпусе С10

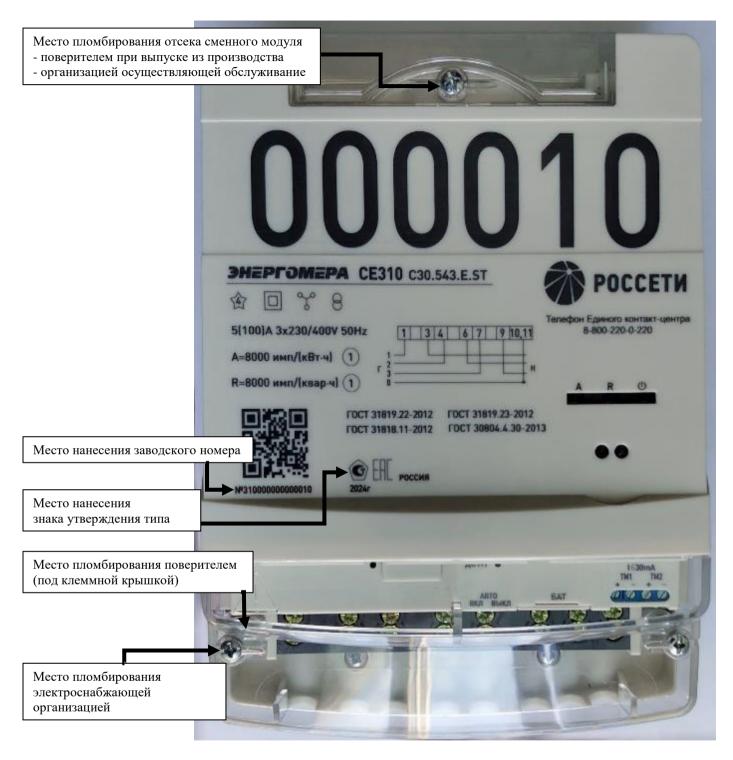


Рисунок 3 – Внешний вид счетчика в корпусе С30

Рисунок 4 – Внешний вид счетчика в корпусе S10

электроснабжающей организацией

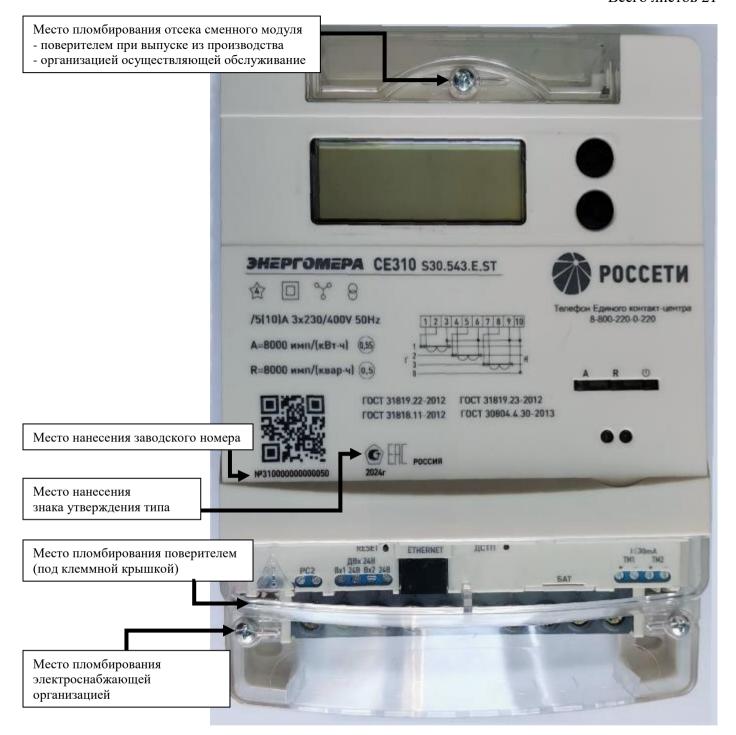


Рисунок 5 – Внешний вид счетчика в корпусе S30

Рисунок 6 – Внешний вид счетчика в корпусе R10

Рисунок 7 — Внешний вид счетчика в корпусе R30

Сведения о программном обеспечении

Идентификационные данные программного обеспечения счетчиков электрической энергии многофункциональных СЕ, в зависимости от количества фаз счетчика, указаны в таблицах 3 и 4.

Таблица 3 — Идентификационные данные программного обеспечения для однофазных счётчиков CE

**	Идентифик		Цифровой	
Наименова-	ационное	Номер версии	идентификатор	Алгоритм вычисления
ние	наименова-	(идентификац	программного	цифрового
програм-	ние	ионный	обеспечения	1
МНОГО	програм-	номер)	(контрольная	идентификатора
обеспече-	МНОГО	программного	сумма	программного обеспечения
кин	обеспечени	обеспечения	исполняемого	ооеспечения
	Я		кода)	
2100_1.hex	2100	1	51373DF6	CRC32
2101_1.hex	2101	1	733AD128	CRC32
2102_1.hex	2102	1	705CCBAB	CRC32
2103_1.hex	2103	1	F194E61A	CRC32
2104_1.hex	2104	1	44FFD4C5	CRC32
2105_1.hex	2105	1	31924A8C	CRC32
2106_1.hex	2106	1	142F5600	CRC32
2107_1.hex	2107	1	6026F3A0	CRC32

Таблица 4 — Идентификационные данные программного обеспечения для трёхфазных счётчиков CE

	Идентифик		Цифровой	
Наименова-	ационное	Номер версии	идентификатор	Алгоритм вычисления
ние	наименова-	(идентификац	программного	цифрового
програм-	ние	ионный	обеспечения	идентификатора
много	програм-	номер)	(контрольная	• •
обеспече-	МНОГО	программного	сумма	программного обеспечения
ния	обеспечени	обеспечения	исполняемого	ооеспечения
	Я		кода)	
3100_1.hex	3100	1	413B6708	CRC32
3101_1.hex	3101	1	6CAE68FE	CRC32
3102_1.hex	3102	1	AE903517	CRC32
3103_1.hex	3103	1	79124399	CRC32
3104_1.hex	3104	1	0708A0D5	CRC32
3105_1.hex	3105	1	DC522AA9	CRC32
3106_1.hex	3106	1	85D937E8	CRC32
3107_1.hex	3107	1	3B1E2D8D	CRC32

По своей структуре ПО счетчика разделено на метрологически значимую и метрологически незначимую части, имеет контрольную сумму метрологически значимой части и записывается в устройство на стадии его производства. Влияние программного продукта на точность показаний счетчиков находится в границах, обеспечивающих метрологические характеристики, указанные в разделе 5. Диапазон представления,

длительность хранения и дискретность результатов измерений соответствуют нормированной точности счетчика.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений средний в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические характеристики счетчика указаны в таблицах 5 - 13.

Таблица 5 – Метрологические характеристики

Таолица 5 – Метрологические характеристики	
Наименование характеристики	Значение
Класс точности* по активной / реактивной энергии	0,2S/0,5;
	0,5S/0,5;
	0,5S/1,0;
	1,0/1,0;
	1,0/2,0
Номинальное $U_{\rm H}$ напряжение, В	57,7 и 230
-	3×57,7/100 и 3×230/400
Номинальный $I_{\rm H}$ или базовый $I_{\rm B}$ ток (максимальный ток	
$I_{ m MAKC}$), в зависимости от кода диапазонов тока из	
структуры условного обозначения, А	
для счетчиков трансформаторного включения	5 (10)
для счетчиков непосредственного включения	5 (80) или 5 (100)
Номинальная частота, Гц	50
Диапазон входных сигналов	
- сила тока для счетчиков класса 1 по активной энергии, А	
- для счетчиков непосредственного включения	от $0.05~I_{ m B}$ до $I_{ m MAKC}$
- для счетчиков трансформаторного включения	от $0{,}02~I_{ m H}$ до $I_{ m MAKC}$
- сила тока для счетчиков класса 0,2S и 0,5S по активной	
энергии, А	от $0{,}01~I_{ m B}(I_{ m H})$ до $I_{ m MAKC}$
- сила тока для счетчиков класса 0,5, 1 и 2 по реактивной	
энергии, А	
- для счетчиков непосредственного включения	от $0{,}05~I_{ m B}$ до $I_{ m MAKC}$
- для счетчиков трансформаторного включения	от $0{,}02~I_{ m H}$ до $I_{ m MAKC}$
- напряжение в зависимости от номинального напряжения	
$U_{\rm H}$ счетчика, В:	
для трехфазных счетчиков:	
- для номинального напряжения 3×57,7/100	от $0,75 \cdot U_{ m H}$ до $1,20 \cdot U_{ m H}$
- для номинального напряжения 3×230/400	от $0{,}60{\cdot}U_{ m H}$ до $1{,}20{\cdot}U_{ m H}$
для однофазных счетчиков:	
- для номинального напряжения 230 B	от $0.75 \cdot U_{ m H}$ до $1.20 \cdot U_{ m H}$

Значение
от 0,8(емк) до 1,0 до 0,5(инд)
от 0,25(емк) до 1,0 до
0,25(инд)
от 47,5 до 52,5
$\pm 0,5$
$\pm 0,05$
$\pm 0,05$
от +18 до +28
от 30 до 80
от -50 до +70
от –40 до +70
от -50 до +70
от 350 до 8000
±0,5
±5
±5

Примечание: * - в зависимости от класса точности метрологические характеристики счетчика соответствуют ГОСТам ГОСТ 31819.21-2012, ГОСТ 31819.22-2012 и ГОСТ 31819.23-2012. Метрологические характеристики для счетчиков класса 0,5 по реактивной энергии приведены в таблицах 6-11. Пределы погрешности для счетчиков класса 0,5 по реактивной энергии не указанные в таблицах 6-11 соответствуют 50% от значений для счетчиков класса 1,0 по ГОСТ 31819.23-2012.

Таблица 6 – Стартовый ток (чувствительность)

	Класс точности счетчика по активной/реактивной				
Тип включения счетчика	энергии				
	0,2S/0,5; 0,5S/0,5	0,5S/1	1/1; 1/2		
непосредственное	_	0,002:ІБ	$0,\!004\cdot I_{\mathrm{B}}$		
через трансформаторы тока	$0,\!001 \cdot I_{\scriptscriptstyle \mathrm{H}}$	$0,001 \cdot I_{\text{H}}$	$0,\!002 \cdot I_{\scriptscriptstyle \mathrm{H}}$		

Таблица 7 – Пределы допускаемых значений основной погрешности при измерении

реактивной энергии и реактивной мощности при симметричной нагрузке

Значение тока для счетчиков включаемых через трансформатор	sin ф (при индуктивной и емкостной нагрузке)	Пределы допускаемой основной погрешности, %, для счетчиков класса точности 0,5 по реактивной энергии	
$0.02 I_{\rm H} \le I < 0.05 I_{\rm H}$	1,0	± 0.75	
$0.05 I_{\rm H} \le I \le I_{\rm MAKC}$	1,0	±0,5	
$0.05 I_{\rm H} \le I < 0.10 I_{\rm H}$	0,5	$\pm 0,75$	
$0.10 I_{\rm H} \le I \le I_{\rm MAKC}$	0,3	±0,5	
$0.10 I_{\rm H} \leq I \leq I_{\rm MAKC}$	0,25	± 0.75	

Таблица 8 – Пределы допускаемых значений основной погрешности при измерении реактивной энергии и реактивной мощности при однофазной нагрузке и симметрии

многофазных напряжений

Значение тока для счетчиков включаемых через трансформатор	sin ф (при индуктивной и емкостной нагрузке)	Пределы допускаемой основной погрешности, %, для счетчиков класса точности 0,5 по реактивной энергии
$0.05 I_{\rm H} \leq I \leq I_{\rm MAKC}$	1,0	±0.75
$0.10 I_{\rm H} \le I \le I_{\rm MAKC}$	0,5	±0,/3

Таблица 9 – Пределы погрешности, вызываемые другими влияющими величинами

для счетчиков класса 0,5 по реактивной энергии

Влияющая величина	Значение тока для счетчиков включаемых через трансформатор	sin ф (при индуктивной и емкостной нагрузке)	Пределы дополнительной погрешности при измерении реактивной энергии для счетчика класса 0,5 по реактивной энергии
Изменение напряжения электропитания	$0.02 I_{\rm H} \le I \le I_{\rm MAKC}$	1,0	$\pm 0,35$
	$0.05 I_{\rm H} \le I \le I_{ m MAKC}$	0,5	±0,5
Изменение частоты электропитания от 47,5 Гц до	$0.02 I_{\rm H} \le I \le I_{ m MAKC}$	1,0	±0,75
52,5 Гц	$0.05 I_{\rm H} \le I \le I_{ m MAKC}$	0,5	±0,75
Постоянная магнитная индукция внешнего происхождения	$I_{ m H}$	1,0	±1,0
Магнитная индукция внешнего происхождения 0,5 мТл	$I_{ m H}$	1,0	±1,0
Радиочастотные электромагнитные поля	$I_{ m H}$	1,0	±1,0

Влияющая величина	Значение тока для счетчиков включаемых через трансформатор	sin ф (при индуктивной и емкостной нагрузке)	Пределы дополнительной погрешности при измерении реактивной энергии для счетчика класса 0,5 по реактивной энергии
Функционирование вспомогательных частей	0,05 I _H	1,0	±0,25
Кондуктивные помехи наводимые радиочастотными полями	$I_{ m H}$	1,0	±1,0
Наносекундные импульсные помехи	$I_{ m H}$	1,0	±2,0
Устойчивость к колебательным затухающим помехам	$I_{ m H}$	1,0	±1,0

Таблица 10 — Пределы допускаемых значений основной относительной погрешности при измерении среднеквадратических значений силы тока

_ 1	71					
Значение тока для счетчиков		Преде	елы до	опусн	каемой	основной
		погре	шности пр	ри из	змерении	тока δ_{l} , %,
		для	счетчико	ОВ	класса	точности
		по акт	гивной/реа	актив	вной энері	гии
с непосредственным	включаемых через	0,2S/	0,5; 0,5S/0),5;	1/	1; 1/2
включением	трансформатор		0,5S/1			
$0.05 I_{\rm B} \le I \le I_{\rm MAKC}$	$0.05 I_{\rm H} \le I \le I_{\rm MAKC}$		±1,0			±2,0

Таблица 11 – Средний температурный коэффициент при измерении токов и напряжений

Значение тока для счетчиков		Средний температурный коэффициент при измерении токов, %/К, для счетчиков			
		класса точности по активной/реактивной			
		энергии	энергии		
с непосредственным	включаемых через	0,2\$ 0,5\$; 0,5\$ 0,5\$;	1/1; 1/2		
включением	трансформатор	0,5S/1			
$0.05 I_{\rm B} \le I \le I_{\rm MAKC}$	$0.05 I_{\rm H} \le I \le I_{\rm MAKC}$	±0,03	±0,05		
Значение напряжения		Средний температурный коэффициент			
		при измерении напряжений, %/К			
В соответствии с диапазоном входных сигналов					
по напряжению по таблице 5		±0,03	±0,05		

Таблица 12 — Пределы допускаемой погрешности при измерении показателей качества электроэнергии в соответствии с классом «S» по ГОСТ 30804.4.30-2013

Transport III B coordinate Rainceoin (1877) in 1 C C 1 5000 in 1.30 2015				
	Диапазон	Пределы допускаемых		
Наименование характеристики	измерений	основных		
	(показаний)	погрешностей		
		измерений		
Отрицательное отклонение напряжения				
электропитания $\delta U_{(-)}$, % ***				
Для трехфазных счетчиков				
- для исполнений 3×57,7/100 B	от 0 до 25	±0,5*		
- для исполнений 3×230/400 B	от 0 до 40			
Для однофазных счетчиков	от 0 до 25			
Положительное отклонение напряжения				
электропитания $\delta U_{(+)}$, % ***	от 0 до 20	±0,5*		
Глубина провала напряжения, %				
Для трехфазных счетчиков				
- для исполнений 3×57,7/100 B	от 0 до 25	±0,5*		
- для исполнений 3×230/400 B	от 0 до 40			
Для однофазных счетчиков	от 0 до 25			
Максимальное значение напряжения при				
перенапряжении, В	от 0 до $1.2 \cdot U_{ m H}$	±0,5*		
Отклонение частоты Δf , $\Gamma \mu^{***}$	от -2,5 до +2,5	±0,05**		

Примечание:

- * пределы допускаемых основных погрешностей при измерении параметров качества электроэнергии, нормированы исходя из пределов допускаемой основной погрешности при измерении напряжении;
- ** пределы допускаемой основной погрешности при измерении отклонения частоты, нормированы исходя из пределов допускаемых значений абсолютной погрешности при измерении частоты напряжения сети;
- *** параметры, для которых выполняется оценка соответствия нормам по ГОСТ 32144-2013.

Таблица 13 – Технические характеристики

Наименование характеристики	Значение
Потребляемая активная мощность по цепи напряжения без учета	
потребления устройств связи, Вт, не более	2
Потребляемая полная мощность по каждой цепи тока при базовом	
(номинальном) токе, В.А, не более	
для счетчиков с непосредственным включением	0,3
для счетчиков включаемых через трансформаторы	0,05
Количество электрических испытательных выходов с параметрами	
по ГОСТ 31819.21-2012 (телеметрических выходов), в зависимости	
от исполнения	от 1 до 2
Количество оптических испытательных выходов с параметрами	
по ГОСТ 31818.11-2012, в зависимости от исполнения	2

Наименование характеристики	Значение
Скорость обмена по интерфейсам в зависимости от	
используемого канала связи, бит/с	от 300 до
	115200
Скорость обмена через оптический порт, бит/с	от 300 до 9600
Габаритные размеры в зависимости от корпуса (ширина х высота х	
глубина), мм, не более	
S10, C10	120×180×74
S30, C30	165×230×75
R10	90×130×75
R30	144×160×75
Масса счетчика в зависимости от счетчика (без учета массы устройства	
считывания счетчиков для сплит счетчиков и без учета массы сменного	
модуля связи), кг, не более	
S10, C10	2
S30, C30	2
R10, R30	1
Средняя наработка на отказ, ч, не менее	400 000
Длительность хранения информации при отключении питания, лет,	
не менее	40
Средний срок службы, лет, не менее	40

Знак утверждения типа

наносится на лицевую панель счетчиков лазерной гравировкой или другим способом, не ухудшающим качества и на титульный лист руководства по эксплуатации, а также в паспорта типографским способом.

Комплектность средства измерений

Комплектность счетчиков приведена в таблице 14.

Таблица 14 – Комплектность

Таолица 14 — Комплектность	1	
Наименование	Обозначение	Количество
Счетчик электрической энергии	-	1
многофункциональный СЕ (одно из исполнений)		
Руководство по эксплуатации (поставляется для		1
однофазных исполнений)	САНТ.411152.341 РЭ	
Паспорт (поставляется для однофазных		1
исполнений)	САНТ.411152.341 ПС	
Руководство по эксплуатации (поставляется для		1
трехфазных исполнений)	САНТ.411152.336 РЭ	
Паспорт (поставляется для трехфазных		1
исполнений)	САНТ.411152.336 ПС	
Методика поверки	-	1*
Устройство считывания счетчиков (удаленный	-	1**
(выносной) дисплей) совместимое со счетчиком		
электрической энергии многофункциональным СЕ		

Наименование	Обозначение	Количество
Сменный модуль связи совместимый со счетчиком		1*
электрической энергии многофункциональным СЕ	-	

^{*} входит в состав поставки по требованию заказчика.

При необходимости в комплект поставки так же могут входить дополнительные комплектующие, при этом их наименование, обозначение и количество указывается в паспорте.

Сведения о методиках (методах) измерений

приведены в руководствах по эксплуатации САНТ.411152.341 РЭ и САНТ.411152.336 РЭ разделе 4 «Порядок снятия показаний электроэнергии» руководства по эксплуатации.

Нормативные и технические документы, устанавливающие требования к средству измерений

ГОСТ 31819.22-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S»;

ГОСТ 31819.21-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2»;

ГОСТ 31818.11-2012 «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии»;

ГОСТ 31819.23-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии»;

ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»;

ГОСТ 30804.4.30-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии»;

ГОСТ IEC 61107-2011 «Обмен данными при считывании показаний счетчиков, тарификации и управления нагрузкой. Прямой локальный обмен данными»;

ТУ 26.51.63-159-63919543-2024 «Счетчики электрической энергии многофункциональные СЕ. Технические условия».

Правообладатель

Акционерное общество «Электротехнические заводы «Энергомера» (АО «Энергомера»)

ИНН 2635133470

Юридический адрес: 355029, Ставропольский край, г. Ставрополь, ул. Ленина, д. 415

Тел./факс: (8652) 56-66-90; (8652) 35-75-27 (центр консультации потребителей)

E-mail: concern@energomera.ru Web-сайт: www.energomera.ru

^{**} входит в комплект поставки только для счетчиков сплит исполнений без D в поле Дополнительные функции структуры условного обозначения. Для других исполнений счетчиков не входит в комплект поставки.

Изготовитель

Акционерное общество «Электротехнические заводы «Энергомера»

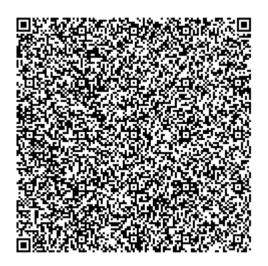
(АО «Энергомера») ИНН 2635133470

Адрес: 355029, Ставропольский край, г. Ставрополь, ул. Ленина, д. 415

Тел./факс: 8 (8652) 56-66-90; 8 (8652) 35-75-27 (центр консультации потребителей)

E-mail: concern@energomera.ru Web-сайт: www.energomera.ru

Испытательный центр


Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон (факс): 8 (495) 655-30-87

E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

