УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «02» ноября 2024 г. № 2637

Лист № 1 Всего листов 7

Регистрационный № 93700-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Мультиметры-калибраторы АКИП-2202А

Назначение средства измерений

Мультиметры-калибраторы АКИП-2202А (далее — мультиметры) предназначены для измерения в режиме мультиметра силы постоянного и переменного тока, напряжения постоянного и переменного тока, электрического сопротивления постоянного тока, частоты, температуры с помощью термопар и термосопротивлений, а также формирования в режиме калибратора: постоянного напряжения и силы постоянного тока, электрического сопротивления постоянного тока, частоты импульсов, статических характеристик термопар и термосопротивлений.

Описание средства измерений

Принцип действия мультиметров основан на аналого-цифровом преобразовании входных сигналов и цифро-аналоговом формировании выходных сигналов. Управление измерения/формирования осуществляется c помощью встроенного микропроцессора. Выбор режима работы осуществляется функциональными клавишами. Дополнительные кнопки служат для установки значения выходной величины. Измеренные и/или выходные значения отображаются на цифровом жидкокристаллическом дисплее с указанием режимов измерения входных сигналов и формирования выходных сигналов. Мультиметры осуществляют измерение температуры с использованием термопар типа R, S, К, Е, J, T, N, В (с компенсацией температуры холодного спая) и термосопротивлений Pt1000, Pt100, Cu50 и формирование статических характеристик, указанных термопреобразователей. Мультиметры обладают дополнительными функциями: генерации ступенчатого или пилообразного изменения силы выходного тока, изменения формируемой силы постоянного тока с нарастанием в диапазоне от 25 % до 100 % с шагом 25 %, удержания результата измерения, автоматического отключения питания.

Мультиметры представляют собой портативные электрические измерительные приборы, выполненные в пластмассовом корпусе.

На передней панели расположены ЖК-дисплей, клавиши выбора режимов измерений входных и формирования выходных сигналов, функциональные кнопки, гнезда подключения проводов. На задней панели находятся крышка отсека для установки батареи питания и защитных предохранителей, откидной упор.

Нанесение знака поверки на мультиметры не предусмотрено.

Пломбирование мультиметров от несанкционированного доступа не предусмотрено.

Серийный (заводской) номер, идентифицирующий каждый экземпляр мультиметров, в виде цифрового обозначения, состоящего из арабских цифр, наносится на корпус методом печати на наклейке, размещаемой на обратной стороне корпуса.

Общий вид мультиметров и место нанесения знака утверждения типа представлены на рисунке 1. Цветовая гамма корпуса мультиметров может быть изменена по решению Изготовителя. Место нанесения заводского номера представлено на рисунке 1.

Рисунок 1 — Общий вид мультиметров, места нанесения знака утверждения типа (A) и серийного номера (Б)

Метрологические и технические характеристики

Таблица 1 – Метрологические характеристики при измерении величин

Наименование характеристики	Предел измерений	Диапазон измерений	Разреше-	Пределы допускаемой основной абсолютной погрешности
1	2	3	4	5
Измерение напряжения постоянного тока	50 мВ	от 0 до ±55,000 мВ	0,001 мВ	$\pm (0.001 \cdot U_{\text{\tiny H3M}} + 0.01) \text{ MB}$
	500 мВ	от 0 до ±550,00 мВ	0,01 мВ	$\pm (0,0005 \cdot U_{изм} + 0,05)$ мВ
	5 B	от 0 до ±5,5000 В	0,0001 B	$\pm (0.0005 \cdot U_{\text{\tiny H3M}} + 0.0005) \text{ B}$
	50 B	от 0 до ±55,000 В	0,001 B	$\pm (0.0005 \cdot U_{\text{\tiny H3M}} + 0.005) B$
	500 B	от 0 до ±550,00 В	0,01 B	$\pm (0.001 \cdot U_{\text{\tiny H3M}} + 0.05) \text{ B}$
	1000 B	от 0 до ±1000,0 В	0,1 B	$\pm (0.001 \cdot U_{\text{\tiny H3M}} + 0.5) \text{ B}$

Продолжение таблицы 1

Продолжение таблиг			•		
1	2	3	4	5	
Измерение напряжения	5 B	от 0 до 5,5000 В	0,0001 B	$\pm (0.005 \cdot U_{\text{изм}} + 0.0004) B^{1)} \pm (0.05 \cdot U_{\text{изм}} + 0.0004) B^{2)}$	
переменного тока	50 B	от 0 до 55,000 В	0,001 B	$\pm (0.005 \cdot U_{\text{изм}} + 0.004) \text{ B}$	
частотой	500 B	от 0 до 550,0 В	0,01 B	$\pm (0.005 \cdot U_{\text{изм}} + 0.04) \text{ B}$	
от 20 Гц до 1 кГц	1000 B	от 0 до 750 В	0,1 B	$\pm (0.01 \cdot U_{\text{\tiny H3M}} + 0.4) \text{ B}$	
	500 Ом	от 0 до 550,00 Ом	0,01 Ом	$\pm (0.0005 \cdot R_{\text{изм}} + 0.15) \text{ Om}$	
	5 кОм	от 0 до 5,5000 кОм	0,0001 кОм	±(0,0005·R _{изм} +0,001) кОм	
Измерение	50 кОм	от 0 до 55,000 кОм	0,001 кОм	$\pm (0,0005 \cdot R_{изм} + 0,01)$ кОм	
электрического сопротивления	500 кОм	от 0 до 550,00 кОм	0,01 кОм	$\pm (0,0005 \cdot R_{изм} + 0,1)$ кОм	
постоянному току	5 МОм	от 0 до 5,5000 МОм	0,0001 МОм	$\pm (0.002 \cdot R_{\text{\tiny H3M}} + 0.0005) \text{ MOm}$	
	50 МОм	от 0 до 55,000 МОм	0,001 МОм	$\pm (0.01 \cdot R_{\text{\tiny H3M}} + 0.01) \text{ MOM}$	
Измерение силы	50 мА	от 0 до ±55,000 мА	0,001 мА	$\pm (0.001 \cdot I_{\text{\tiny H3M}} + 0.005) \text{ MA}$	
постоянного тока	500 мА	от 0 до ±500,00 мА	0,01 мА	$\pm (0,001 \cdot I_{\text{изм}} + 0,05) \text{ MA}$	
Измерение силы	50 мА	от 0 до 55,000 мА	0,001 мА	$\pm (0.0015 \cdot I_{\text{изм}} + 0.02) \text{ MA}$	
переменного тока частотой от 20 Гц до 1 кГц	500 мА	от 0 до 500,00 мА	0,01 мА	$\pm (0,0015 \cdot I_{\text{изм}} + 0,1) \text{ MA}$	
	10 Гц	от 0 до 9,9999 Гц	0,0001 Гц	$\pm (0,0002 \cdot F_{\scriptscriptstyle \rm H3M} + 0,0004) \ \Gamma$ ц	
Измерение	100 Гц	от 0 до 99,999 Гц	0,001 Гц	$\pm (0,0002 \cdot F_{\text{изм}} + 0,004) \Gamma$ ц	
частоты ¹⁰⁾	1000 Гц	от 0 до 999,99 Гц	0,01 Гц	$\pm (0,0002 \cdot F_{\text{изм}} + 0,04) \Gamma$ ц	
	10 кГц	от 0 до 9,9999 кГц	0,0001 кГц	$\pm (0,0002 \cdot F_{\text{изм}} + 0,0004)$ к Γ ц	
	R	от 0°C до +1760 °C		$\pm (0.001 \cdot T_{\text{\tiny H3M}} + 3) ^{\circ}\text{C}^{3)}$	
	S	от 0°C до +1760 °C		$\pm (0.001 \cdot T_{\text{\tiny H3M}} + 2) ^{\circ}\text{C}^{4)}$	
Hayram ayyya	В	от +600°C до +1800 °C	1 °C	$\pm (0.001 \cdot T_{\text{\tiny H3M}} + 3) ^{\circ}\text{C}^{5)} \\ \pm (0.001 \cdot T_{\text{\tiny H3M}} + 2) ^{\circ}\text{C}^{6)}$	
Измерение температуры с помощью	K	от -200°C до +1350 °C		±(0,001·T _{изм} +2) °C ⁷⁾	
термопар ⁹⁾	Е	от -200°C до +700 °C			
P	J	от -200°C до +950 °C	0,1 °C	$\pm (0,001 \cdot T_{\text{изм}} + 2) \cdot C$ $\pm (0,001 \cdot T_{\text{изм}} + 1) \cdot C^{8}$	
	T	от -200°C до +400 °C		(0,001 1 _{113M} 11)	
	N	от -200°С до +1300 °С			
Измерение	Cu50	от -50°C до +150 °C			
температуры с	Pt100	от -200°C до +850 °C	0.1.00	±(0,001·Т _{изм} +1) °С	
помощью термосопротивле- ний ⁹⁾	Pt1000	от -200°C до +630 °C	0,1 °C		
Измерение электрической емкости	10 нФ	от 0 до 11,00 нФ	0,01 нФ	$\pm (0.05 \cdot C_{\text{изм}} + 0.5) $ нФ	
	100 нФ	от 0 до 110,0 нФ	0,1 нФ	$\pm (0.05 \cdot C_{изм} + 0.5) н\Phi$	
	1000 нФ	от 0 до 1100 нФ	1 нФ	$\pm (0.05 \cdot C_{изм} + 5) н\Phi$	
	10 мкФ	от 0 до 11,00 мкФ	0,01 мкФ	$\pm (0.05 \cdot C_{изм} + 0.05)$ мкФ	
	100 мкФ	от 0 до 110,0 мкФ	0,1 мкФ	$\pm (0.05 \cdot C_{\text{изм}} + 0.5)$ мкФ	
	1000 мкФ	от 0 до 1100 мкФ	1 мкФ	$\pm (0.05 \cdot C_{изм} + 50)$ мкФ	

Продолжение таблицы 1

Примечания

 $U_{\mbox{\tiny H3M}},\,R_{\mbox{\tiny H3M}},\,I_{\mbox{\tiny H3M}},\,F_{\mbox{\tiny H3M}},\,T_{\mbox{\tiny H3M}},\,C_{\mbox{\tiny H3M}}$ – значения измеряемых величин

Пределы дополнительной абсолютной погрешности измерения при температуре меньше +18 °C и больше +28 °C рассчитывается по формуле $(0,1\cdot\Delta)$ на каждый 1 °C отклонения, где Δ – значение допускаемой основной абсолютной погрешности

- 1) при частоте напряжения переменного тока до 400 Гц включ.
- $^{2)}$ при частоте напряжения переменного тока св. 400 Γ ц
- 3) при измеряемой температуре до плюс 100 °C включ.
- 4) при измеряемой температуре св. плюс 100 °C
- $^{5)}$ при измеряемой температуре до плюс $800~^{\circ}\mathrm{C}$ включ.
- $^{6)}$ при измеряемой температуре св. плюс $800~^{\circ}\mathrm{C}$
- 7) при измеряемой температуре до минус 100 °C включ.
- 8) при измеряемой температуре св. минус 100 °C
- 9) Погрешность нормируется без учета погрешности термопреобразователей. Суммарная погрешность при измерении температуры определяется как алгебраическая сумма погрешностей мультиметра и термопреобразователя

10) - при частоте измеряемого сигнала больше 3 Гц

Таблица 2 – Метрологические характеристики при воспроизведении величин

Наименование характеристики	Предел	Диапазон воспроизведений	Разреше- ние	Пределы	
Воспроизведение	100 мВ	от -10,00 до +110,00 мВ	0,01 мВ	±(0,0005·U+0,03) мВ	
напряжения	1000 мВ	от -100,0 до +1100,0 мВ	0,1 мВ	$\pm (0.0005 \cdot U + 0.3) \text{ MB}$	
постоянного тока	10 B	от -1,000 до +11,000 В	0,001 B	$\pm (0.0005 \cdot U + 0.002) B$	
Воспроизведение силы постоянного тока	30 мА	от 0 до +33,000 мА	0,001 мА	±(0,0005·I+0,004) мА	
Воспроизведение электрического	400 Ом	от 0 до 400,0 Ом	0,1 Ом	±(0,0005·R+0,2) Ом	
сопротивления постоянного тока	4 кОм	от 0 до 4,000 кОм	1 Ом	±(0,0005·R+2) OM	
	R	от 0°C до +1767 °C		$\pm (0,0005 \cdot T+3) ^{\circ}C^{1)} \pm (0,0005 \cdot T+2) ^{\circ}C^{2)}$	
	S	от 0 °C до +1767 °C	1 °C		
Воспроизведение	В	от +600 °C до +1820 °C			
статических	K	от -200 °C до +1372 °C			
характеристик	E	от -200 °C до +1000 °C		$\pm (0.0005 \cdot T + 2) \circ C^{3)}$ $\pm (0.0005 \cdot T + 1) \circ C^{4)}$	
термопар ⁶⁾	J	от -200 °C до +1200 °C	0,1 °C		
	T	от -250 °C до +400 °C			
	N	от -200 °C до +1300 °C			
Воспроизведение	Cu50	от -50 °C до +150 °C			
статических характеристик	Pt100	от -200 °C до +850 °C	0,1 °C	±(0,0005·T+0,6) °C	
термосопротивлений ⁷⁾	Pt1000	от -200 °C до +630 °C			
	100 Гц	от 1,0 до 110,0 Гц	0,1 Гц	±(0,0005·F+0,2) Гц	
Воспроизведение	1 кГц	от 0,100 до 1,100 кГц	0,001	$\pm (0,0005 \cdot F + 0,002)$	
частоты выходных			кГц	кГц	
импульсов ⁵⁾	5 кГц	от 1,00 до 6,00 кГц	0,01 кГц	±(0,0005⋅F+0,02) кГц	
	10 кГц	от 6,0 до 11,0 кГц	0,1 кГц	$\pm (0,0005 \cdot F + 0,2)$ кГц	

Продолжение таблицы 2

Примечания

U, R, I, F, T – значения воспроизводимых величин

- 1) при воспроизведении сигнала термопары до плюс100 °C включ.
- 2) при воспроизведении сигнала термопары св. плюс100 °C
- 3) при воспроизведении сигнала термопары до минус 100 °C вкл.
- $^{4)}$ при воспроизведении сигнала термопары св. минус $100~^{\circ}\mathrm{C}$
- ⁵⁾ Выходной сигнал прямоугольной формы со скважностью 0,5 и амплитудой, задаваемой в диапазоне от 1 до 11 В
- $^{6)}$ погрешность нормируется без учета погрешности компенсации температуры холодного спая
- 7) погрешность нормируется без учета сопротивления соединительных проводов

Таблица 3 – Технические характеристики мультиметров

Наименование характеристики	Значение
Масса, кг, не более	0,5
Габаритные размеры (ширина×высота×глубина), мм	206×97×60
Параметры электрического питания:	
- напряжение питания постоянного тока (4 батареи АА), В	6
Нормальные условия измерений:	
- температура окружающего воздуха, °С	от +18 до +28
- относительная влажность воздуха, %, не более	75
- атмосферное давление, кПа	от 84,0 до 106,7
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от 0 до +40
- относительная влажность воздуха, %, не более	80
- атмосферное давление, кПа	от 84,0 до 106,7

Таблица 4 – Показатели надежности

Наименование характеристики	Значение
Средний срок службы, лет	5
Средняя наработка на отказ, ч	10000

Знак утверждения типа

наносится на переднюю панель мультиметров методом наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество шт./экз.		
Мультиметр-калибратор	АКИП-2202А	1		
Измерительные провода со съемным наконечником	-	2		
Зажимы типа крокодил	-	2		
Сумка-чехол	-	1		
Элементы питания	AA	4		
Зарядное устройство 1)	-	1		
Руководство по эксплуатации	-	1		
Примечание:	_			
$^{1)}$ – поставляется по отдельному заказу				

Сведения о методиках (методах) измерений

приведены в разделе «Проведение измерений» руководства по эксплуатации.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

Приказ Росстандарта от 28 июля 2023 г. № 1520 «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы»;

Приказ Росстандарта от 18 августа 2023 г. № 1706 «Об утверждении государственной поверочной схемы для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от $1 \cdot 10^{-1}$ до $2 \cdot 10^9$ Гц»;

Приказ Росстандарта от 1 октября 2018 г. № 2091 «Об утверждении государственной поверочной схемы для средств измерений силы постоянного тока в диапазоне от $1 \cdot 10^{-16}$ до 100 A»;

Приказ Росстандарта от 17 марта 2022 г. № 668 «Об утверждении государственной поверочной схемы для средств измерений силы переменного электрического тока от $1 \cdot 10^{-8}$ до 100 А в диапазоне частот от $1 \cdot 10^{-1}$ до $1 \cdot 10^{6}$ Гц»;

Приказ Росстандарта от 30 декабря 2019 г. № 3456 «Об утверждении государственной поверочной схемы для средств измерений электрического сопротивления постоянного и переменного тока»;

Приказ Росстандарта от 26 сентября 2022 г. № 2360 «Об утверждении государственной поверочной схемы для средств измерений времени и частоты»;

ГОСТ 8.371-80 «ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений электрической емкости»;

Стандарт предприятия «Мультиметры-калибраторы АКИП-2202A».

Правообладатель

«Double King Industrial Holdings Co., Limited», Китай

Адрес: Room 2107, 21/F., C C WU Building, 302-308 Hennessy Road, Wanchai,

HongKong

Телефон: +86 755 8242 6859 Факс: +86 755 2592 1032

Web-сайт: http://www.china-victor.com

Изготовитель

«Double King Industrial Holdings Co., Limited», Китай

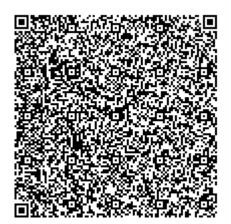
Адрес: Room 2107, 21/F., C C WU Building, 302-308 Hennessy Road, Wanchai,

HongKong

Телефон: +86 755 8242 6859 Факс: +86 755 2592 1032

Web-сайт: http://www.china-victor.com

Испытательный центр


Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ)

Адрес: 111141, г. Москва, ул. Плеханова, д. 15А

Телефон: +7(495) 777-55-91 Факс: +7(495) 640-30-23 E-mail: prist@prist.ru

Web-сайт: http://www.prist.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.314740.

