УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «24» декабря 2024 г. № 3075

Лист № 1 Всего листов 6

Регистрационный № 94196-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы медицинского контроля MedControl

Назначение средства измерений

Системы медицинского контроля MedControl (далее – CMK) предназначены для измерений и анализа следующих показателей жизнедеятельности человека: частоты пульса, показателей артериального давления, температуры тела человека бесконтактным методом и экспрессных измерений массовой концентрации паров этанола в отобранной пробе выдыхаемого воздуха, с целью определения отсутствия/наличия признаков воздействия опасных и (или) вредных производственных факторов рабочей среды, трудового процесса на состояние здоровья работника, признаков острого профессионального заболевания или отравления.

Описание средства измерений

Принцип действия канала артериального давления основан на определении систолического и диастолического артериального давления косвенным осциллометрическим способом.

Принцип действия канала измерений частоты пульса основан на определении по частоте пульсаций давления воздуха в компрессионной манжете в интервале времени от момента определения систолического до момента определения диастолического давления.

Принцип действия канала термометрии основан на измерении, дальнейшем преобразовании в электрический сигнал тепловой энергии инфракрасного излучения поверхности тела.

Принцип действия канала измерений массовой концентрации паров этанола в выдыхаемом воздухе основан на работе электрохимического датчика.

Конструктивно СМК представляют собой устройство, в которое интегрированы измерительные каналы, измеряющие физиологические параметры человека, программное обеспечение и монитор для отображения результатов измерений и управления СМК.

Заводской номер наносится на маркировочную табличку любым технологическим способом в виде буквенно-цифрового кода.

Общий вид СМК с указанием места нанесения знака утверждения типа и заводского номера представлены на рисунках 1 и 2. Нанесение знака поверки на СМК не предусмотрено. Способ ограничения доступа к местам настройки (регулировки) — датчик вскрытия корпуса.

Рисунок 1 — Общий вид СМК в корпусе с указанием места нанесения знака утверждения типа, места нанесения заводского номера

Рисунок 2 – Общий вид СМК без корпуса с указанием места нанесения знака утверждения типа, места нанесения заводского номера

Программное обеспечение

Встроенное программное обеспечение (далее - ПО) предназначено для управления, считывания и сохранения результатов измерений, изменения настроек и параметров СМК. ПО СМК запускается в автоматическом режиме после включения. ПО защищено от преднамеренных и непреднамеренных изменений.

ПО является метрологически значимым.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО СМК приведены в таблице 1.

Таблица 1 – Идентификационные данные встроенного ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	MedControl
Номер версии (идентификационный номер ПО)	1.X.XX
Цифровой идентификатор ПО	_
Примечания:	

- $1. \ \text{«X»}$ номер версии метрологически незначимой части встроенного ΠO , может принимать целые значения в диапазоне от 1 до 9.
 - 2. «1» номер версии метрологически значимой части встроенного ПО.

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики канала измерений массовой концентрации паров этанола в выдыхаемом воздухе

Наименование характеристики	Значение
Метод измерения массовой концентрации паров этанола в выдыхаемом воздухе	электрохимический
Диапазон измерений массовой концентрации паров этанола в выдыхаемом воздухе, мг/л	от 0,0 до 1,7
Пределы допускаемой абсолютной погрешности измерений массовой концентрации паров этанола в выдыхаемом воздухе в диапазоне от 0,0 до 0,3 мг/л включ., мг/л	±0,03
Пределы допускаемой относительной погрешности измерений массовой концентрации паров этанола в выдыхаемом воздухе в диапазоне св. 0,3 до 1,7 мг/л включ., %	±10

Таблица 3 – Метрологические характеристики канала измерений неинвазивного давления и частоты пульса

Наименование характеристики	Значение	
Метод измерения избыточного давления воздуха в манжете	осциллометрический	
Диапазон измерений избыточного давления воздуха в манжете, мм рт.ст.	от 20 до 300	
Пределы допускаемой абсолютной погрешности измерений избыточного давления воздуха в манжете, мм рт.ст.	±3	
Диапазон измерений частоты пульса, мин ⁻¹	от 40 до 200	
Пределы допускаемой относительной погрешности измерений частоты пульса, %	±5	

Таблица 4 — Метрологические характеристики канала измерений температуры тела человека бесконтактным методом

Наименование характеристики	Значение
Метод измерения температуры	бесконтактный
Диапазон измерений температуры, °С	от 32 до 42
Пределы допускаемой абсолютной погрешности измерений температуры, °С	±0,3

Таблица 5 – Технические характеристики канала показаний температуры окружающего

воздуха, относительной влажности и освещенности

Наименование характеристики	Значение	
Диапазон показаний относительной влажности окружающего воздуха, %	от 0 до 100	
Диапазон показаний температуры, °С	от 0 до +50	
Диапазон показаний освещенности, лк	от 0 до 5000	

Таблица 6 – Технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
– напряжение переменного тока, В	от 198 до 242
– частота переменного тока, Гц	50,0±0,5
Габаритные размеры (длина×ширина×высота), мм, не более	310×180×410
Масса, кг, не более	8
Рабочие условия измерений:	
– температура окружающего воздуха, °С	от +10 до +35
– относительная влажность окружающего воздуха, %, не более	80

Таблица 7 – Показатели надежности

Наименование характеристики	Значение
Средний срок службы, лет	5
Средняя наработка на отказ, ч	8000

Знак утверждения типа

наносится на маркировочную табличку любым технологическим способом, а также на титульный лист руководства по эксплуатации и паспорт типографским способом.

Комплектность средства измерений

Таблица 8 – Комплектность средства измерений

Наименование	Обозначение	Коли-чество
Система медицинского контроля в составе: 1) Платформа удалённого сбора и обработки		1 шт.
результатов медицинских осмотров MedControl		1 шт.
2) Корпус настольный в составе:		1 шт.
– планшет		1 шт.
– USB–концентратор		1 шт.
– USB–камера	MedControl	1 шт.
- считыватель RFID-карт (при		
необходимости)		1 шт.
датчик освещенности		1 шт.
 датчик влажности и температуры 		1 шт.
датчик вскрытия корпуса		1 шт.
– плата питания и сопряжения		1 шт. 2 шт.
– вентилятор		Z IIIT.
Сетевой шнур	POWER CUBE RPC-186BL XL-PRO	1 шт.
Паспорт	ФПДТ.941119.001 ПС	1 экз.
Руководство по эксплуатации	ФПДТ.941119.001 РЭ	1 экз.
Руководство пользователя ПО Медработник	ФПДТ.941119.001 РПМ	1 экз.
Руководство пользователя ПО Клиент	ФПДТ.941119.001 РПК	1 экз.
Руководство пользователя ПО Администратор	ФПДТ.941119.001 РПА	1 экз.
Руководство пользователя ПО Работник	ФПДТ.941119.001 РПР	1 экз.
Упаковка	-	1 шт.

Сведения о методиках (методах) измерений

приведены в разделе «Описание и работа» руководства по эксплуатации.

Нормативные документы, устанавливающие требования к средству измерений

Постановление Правительства Российской Федерации от 16 ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений» (п. 1.6, 1.11, 12.2);

Постановление Правительства Российской Федерации от 30 мая 2023 г. № 866 «Об особенностях проведения медицинских осмотров с использованием медицинских изделий, обеспечивающих автоматизированную дистанционную передачу информации о состоянии здоровья работников и дистанционный контроль состояния их здоровья»;

Приказ Федерального агентства по техническому регулированию и метрологии от 30 декабря 2019 г. № 3464 «Об утверждении государственной поверочной схемы для электродиагностических средств измерений медицинского назначения»;

Приказ Федерального агентства по техническому регулированию и метрологии от 20 октября 2022 г. № 2653 «Об утверждении государственной поверочной схемы для средств измерений избыточного давления до 4000 МПа»;

Приказ Федерального агентства по техническому регулированию и метрологии от 23 декабря 2022 г. № 3253 «Об утверждении государственной поверочной схемы для средств измерений температуры»;

Приказ Федерального агентства по техническому регулированию и метрологии от 30 декабря 2019 г. № 3452 «Об утверждении государственной поверочной схемы для средств измерений содержания этанола в газовых средах»;

ФПДТ.941119.001 ТУ «Система медицинского контроля MedControl. Технические условия».

Правообладатель

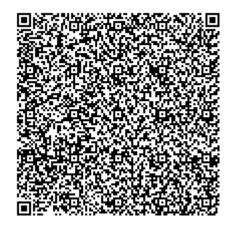
Акционерное общество «Технология здоровья» (АО «Технология здоровья») ИНН 7728865041

Адрес юридического лица: 117246, г. Москва, Научный пр-д, д. 17, эт. 8, помещ. И

Изготовитель

Акционерное общество «Технология здоровья» (АО «Технология здоровья») ИНН 7728865041

Адрес юридического лица: 117246, г. Москва, Научный пр-д, д. 17, эт. 8, помещ. II Адрес места осуществления деятельности: 117246, г. Москва, Научный пр-д, д. 6, эт. 2, помещ. 1, ком. 24-25


Испытательный центр

Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский и испытательный институт медицинской техники» Федеральной службы по надзору в сфере здравоохранения (ФГБУ «ВНИИИМТ» Росздравнадзора)

Адрес: 115478, г. Москва, Каширское ш., д. 24, стр. 16

Телефон: +7 (495) 989-73-62 E-mail: info@vniiimt.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312253.

