УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «26» декабря 2024 г. № 3120

Лист № 1 Всего листов 8

Регистрационный № 94222-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «КРЗ»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «КРЗ» (далее — АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (далее – ИИК), которые включают в себя трансформаторы тока (далее – ТТ), трансформаторы напряжения (далее – ТН), трансформаторы тока и напряжения измерительные комбинированные электронные (далее – ТТНИКЭ и счетчики активной и реактивной электроэнергии/устройства измерительные многофункциональные (далее – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень — информационно-вычислительный комплекс (далее — ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (далее — БД) АИИС КУЭ, автоматизированные рабочие места персонала (APM), устройство синхронизации времени (далее — УСВ) типа УСВ-3 и программное обеспечение (далее — ПО) ПК «Энергосфера».

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на сервер БД по беспроводным (GSM/GPRS) каналам связи, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов.

Передача информации в АО «АТС», в АО «СО ЕЭС» и всем заинтересованным субъектам ОРЭМ с использованием электронной подписи (ЭП) субъекта ОРЭМ, осуществляется с сервера ИВК (либо АРМ) по каналу связи с протоколом ТСР/ІР по сети Internet в виде хml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ, на основе приемника сигналов точного времени от глобальной навигационной спутниковой системы (ГЛОНАСС/GPS).

Корректировка часов ИВК выполняется автоматически, от УСВ при расхождении более чем на ± 1 с. Корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и ИВК на величину более ± 2 с.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Нанесение знака поверки на АИИС КУЭ не предусмотрено.

Маркировка заводского номера и даты выпуска АИИС КУЭ наносится на этикетку, расположенную на коммутационном шкафу, типографическим способом. Дополнительно заводской номер указывается в паспорте-формуляре.

Заводской номер АИИС КУЭ: 001.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Идентификационные данные ПО

1 1 1 1			
Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПК «Энергосфера»		
	Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	Не ниже 1.1.1.1		
Цифровой идентификатор ПО	6c13139810a85b44f78e7e5c9a3edb93		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

	пица 2 — состав итс	Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК	Наименование ИК	TT	ТН	Счётчик	УСВ	Вид электро- энергии	Основная погрешность, %	Погре- шность в рабочих усло- виях, %
1	2	3	4	5	6	7	8	9
1	ВЛ-110 кВ «КР3-1»	ТВГ-УЭТМ® Кл. т. 0,2S	НАМИ Кл. т. 0,5	СЭТ- 4ТМ.03М.01		активная	±1,0	±2,4
1		Ктт 600/5 Рег. № 52619-13	Ктн 110000:√3/100:√3 Рег. № 60353-15	Кл. т. 0,5S/1,0 Рег. № 36697-17		реактивная	±2,1	±4,2
2	ВЛ-110 кВ «КРЗ-2»	ТВГ-УЭТМ® Кл. т. 0,2S	НКФ-110-57-У1 Кл. т. 0,5	СЭТ- 4ТМ.03М.01	84823-22	активная	±1,0	±2,4
		Ктт 600/5 Рег. № 52619-13	Ктн 110000:√3/100:√3 Рег. № 14205-94	Кл. т. 0,5S/1,0 Рег. № 36697-17		реактивная	±2,1	±4,2
	ПС 110 кВ КРЗ, ОРУ-35 кВ, яч. Ахуново	ТОЛ-СВЭЛ Кл. т. 0,5	ЗНОЛ Кл. т. 0,5	СЭТ- 4ТМ.03М.01	Nº 848	активная	±1,2	±3,3
3		Ктт 100/5 Рег. № 70106-17	Ктн 35000:√3/100:√3 Рег. № 46738-11	Кл. т. 0,5S/1,0 Рег. № 36697-17	Per.	реактивная	±2,9	±5,7
4	ПС 110 кВ КРЗ, ЗРУ-6 кВ, яч.7	ТПЛ-10 Кл. т. 0,5		ycB-3	активная	±1,2	±3,3	
4		Ktt 50/5 Per. № 1276-59	Ктн 6000/100 Рег. № 2611-70	Кл. т. 0,5S/1,0 Рег. № 46634-11		реактивная	±2,9	±5,7
_	ПС 110 кВ КРЗ,	ТВЛМ-10 Кл. т. 0,5	НТМИ-6-66 Кл. т. 0,5	ПСЧ- 4ТМ.05МК.12		активная	±1,2	±3,3
5	ЗРУ-6 кВ, яч.9	KTT 300/5 Per. № 1856-63	Ктн 6000/100 Рег. № 2611-70	Кл. т. 0,5S/1,0 Рег. № 46634-11		реактивная	±2,9	±5,7

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
6	ПС 110 кВ КРЗ,	ТПЛ-10УЗ Кл. т. 0,5	НТМИ-6-66 Кл. т. 0,5	ПСЧ- 4TM.05MK.12	-3 823-22	активная	±1,2	±3,3
	ЗРУ-6 кВ, яч.32	Ktt 300/5 Per. № 1276-59	Ктн 6000/100 Рег. № 2611-70	Кл. т. 0,5S/1,0 Рег. № 46634-11		реактивная	±2,9	±5,7
7	ПС 35 кВ Урал, Ввод 35кВ Т-1	ТЕСV Кл. т. 0,5S Ктт 100/5 Рег. № 82812-21	ТЕСV Кл. т. 0,5 Ктн 35000:√3/100:√3 Рег. № 82812-21	ESM-ET59-12- A2E2-05S-M12- K82 Кл. т. 0,5S/1,0 Per. № 66884-17	YCB. Per. № 84	активная реактивная	±1,2 ±2,9	±3,4 ±5,8
Пределы допускаемой абсолютной погрешности смещения шкалы времени компонентов АИИС КУЭ, входящих в состав СОЕВ, относительно шкалы времени UTC(SU), (Δ), с						±	.5	

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд, I=0.02(0.05) $I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1-7 от 0 °C до +40 °C.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 5 Допускается замена УСВ на аналогичные утвержденных типов.
- 6 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке с внесением изменений в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Таблица 3 – Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество ИК	7
Нормальные условия:	
параметры сети:	
– напряжение, $\%$ от $U_{\text{ном}}$	от 99 до 101
$-$ ток, $\%$ от $\mathrm{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	от 100 до 120
– частота, Гц	от 49,85 до 50,15
– коэффициент мощности соsф	0,9
– температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
– напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle{\mathrm{HOM}}}$	от 90 до 110
$-$ ток, $\%$ от $\mathrm{I}_{\scriptscriptstyle{HOM}}$	от 2(5) до 120
– коэффициент мощности соsф	от $0,5$ инд до $0,8$ емк
– частота, Гц	от 49,6 до 50,4
– температура окружающей среды для ТТ, ТН и ТТНИКЭ, °С	от –40 до +45
 температура окружающей среды в месте расположения 	
счетчиков, °С	от 0 до +40
 температура окружающей среды в месте расположения 	
сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
среднее время наработки на отказ, ч, не менее:	220000
 среднее время восстановления работоспособности, ч 	2
УСВ:	
 среднее время наработки на отказ не менее, ч 	3500
 среднее время восстановления работоспособности, ч 	2
Сервер:	
среднее время наработки на отказ, ч, не менее	70000
 среднее время восстановления работоспособности, ч 	1
Глубина хранения информации	
Счетчики:	
– тридцатиминутный профиль нагрузки в двух	114
направлениях, сутки, не менее	
при отключении питания, лет, не менее	45
Сервер:	
 хранение результатов измерений и информации состояний 	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:

- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - сервера.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформатор тока	ТВГ-УЭТМ®	6
Трансформатор тока	ТОЛ-СВЭЛ	2
Трансформатор тока	ТПЛ-10	2
Трансформатор тока	ТВЛМ-10	2
Трансформатор тока	ТПЛ-10УЗ	2
Трансформаторы тока и напряжения измерительные комбинированные электронные	TECV	3
Трансформатор напряжения	НАМИ	3
Трансформатор напряжения	НКФ-110-57-У1	3
Трансформатор напряжения	ЗНОЛ	3
Трансформатор напряжения	НТМИ-6-66	3
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.01	3
Счётчик электрической энергии многофункциональный	ПСЧ-4ТМ.05МК.12	3
Устройство измерительное многофункциональное	ESM-ET59-12-A2E2-05S- M12-K82	1
Устройство синхронизации времени	УСВ-3	1
Программное обеспечение	ПК «Энергосфера»	1
Паспорт-Формуляр	009-ПФ	1

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «КРЗ», аттестованном ООО «Спецэнергопроект», г. Москва, уникальный номер записи в реестре аккредитованных лиц № RA.RU.312236.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

ГОСТ Р 59793-2021 «Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Филиал Общества с ограниченной ответственностью «Завод Технофлекс» г. Учалы (Филиал ООО «Завод Технофлекс» г. Учалы)

ИНН 6229024796

Юридический адрес: 390028, Рязанская обл., г. Рязань, ул. Прижелезнодорожная, д. 5 E-mail: kilmuhametova@tn.ru

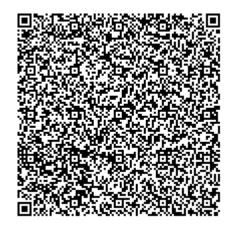
Изготовитель

Общество с ограниченной ответственностью «ЭнерВита» (ООО «ЭнерВита»)

ИНН 7718892751

Адрес: 107014, г. Москва, ул. Русаковская, д. 22, помещ. V, ком. 43

Телефон: 8 (499) 735-42-30 E-mail: enervita@mail.ru


Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект» (ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, эт. 4, помещ. І, ком. 6, 7

Телефон: 8 (495) 410-28-81 E-mail: info@sepenergo.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312429.

