УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «27» декабря 2024 г. № 3146

Лист № 1 Всего листов 11

Регистрационный № 94285-24

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы автоматического контроля промышленных выбросов загрязняющих веществ в атмосферу газоперекачивающих агрегатов ГПА-32 «Ладога»

Назначение средства измерений

Системы автоматического контроля промышленных выбросов загрязняющих веществ в атмосферу газоперекачивающих агрегатов ГПА-32 «Ладога» (далее — Системы) предназначены для измерений массовой концентрации оксида азота, диоксида азота, диоксида серы, оксида углерода, объемной доли кислорода и водяного пара в отходящих дымовых газах, параметров газопылевого потока отходящих дымовых газов (температуры, абсолютного давления, скорости потока, объемного расхода).

Описание средства измерений

Принцип действия Систем заключается в последовательных измерительных преобразованиях измеряемых величин в аналоговый, а затем цифровой сигнал с дальнейшей обработкой результатов измерений, их отображением и передачей во внешнее оборудование.

Системы включают в себя измерительные каналы (далее – ИК):

- ИК абсолютного давления газопылевого потока отходящих дымовых газов;
- ИК температуры газопылевого потока отходящих дымовых газов;
- ИК объемного расхода и скорости потока газопылевого потока отходящих дымовых газов;
 - ИК массовой концентрации оксида азота;
 - ИК массовой концентрации диоксида азота;
 - ИК массовой концентрации диоксида серы;
 - ИК массовой концентрации оксида углерода;
 - ИК объемной доли кислорода;
 - ИК объемной доли водяного пара.

ИК Систем состоят из первичных измерительных преобразователей (ПИП), осуществляющих измерения физических величин и преобразование измерительной информации в аналоговые сигналы с последующей передачей на следующий уровень, и вторичной части ИК (ВИК), осуществляющей аналого-цифровое преобразование сигналов, сбор, обработку, хранение, цифро-аналоговое преобразование и передачу измерительной информации в стороннее оборудование. Первичная и вторичная части соединяются проводными линиями связи.

Для формирования отчётной информации о показателях выбросов и её передачи, в ВИК на основе результатов измерений производится вычисление разовых, массовых и валовых

выбросов в соответствии с аттестованной методикой (методом) измерений, разработанной на основе ГОСТ Р 70805-2023.

В состав Систем входят следующие типы ПИП:

- преобразователи температуры Метран-280, Метран-280-Ех, модели Метран-281, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее ФИФ ОЕИ) 23410-13;
- датчики давления Метран-150, модели Метран-150TA и Метран-150CD, регистрационный номер в ФИФ ОЕИ 32854-13. Датчики Метран-150CD используются совместно с преобразователями расхода измерительными SDF, регистрационный номер в ФИФ ОЕИ 57091-14:
- газоанализаторы Метран АГ, модели 500, регистрационный номер в ФИФ ОЕИ 89775-23.

ВИК включает в себя следующее оборудование:

- преобразователи искробезопасные (барьеры искрозащиты) серий SL и SLA, модификация SLA-2I-4-20, регистрационный номер в ФИФ ОЕИ 77497-20;
- модули автоматики серии NL, модификации NLS-8AI и NLS-4AO, регистрационный номер в ФИФ ОЕИ 75710-19;
 - программируемый логический контроллер NLScon, осуществляющий сбор данных;
 - автоматизированное рабочее место (АРМ) оператора на базе панельного компьютера.

Компоненты ВИК смонтированы в контроллерной стойке ST1. В Системы входят также пробоотборные зонды, обогреваемые линии подачи пробы, вспомогательное и связующее оборудование. Для обеспечения рабочей температуры в холодное время года для датчиков давления Метран-150 и пробоотборного устройства предусмотрены термочехлы. Общий вид стойки АСКПВ ST1 приведен на рисунке 1.

К данному типу относятся системы, зав. № 100222, 100223, 100224, 100225, 100226, 100227, 100228, 100229, 100230, 100231, 100232, 100233. Заводской номер, состоящий из шести арабских цифр, нанесен способом лазерной гравировки на информационную табличку, расположенную на стойке ST1 в месте, указанном на рисунке 1. Нанесение знака поверки на средство измерений не предусмотрено. Пломбирование Систем от несанкционированного доступа не предусмотрено, предусмотрен контроль доступа входной двери. Пломбирование ПИП, входящих в состав Систем, осуществляется в соответствии с описаниями типа на эти средства измерений.

Рисунок 1 – Общий вид стойки ST1

Программное обеспечение

Метрологически значимое программное обеспечение (далее – Π O) Систем включает Π O измерительных компонентов и библиотеку расчетного модуля Π O «Экология $M\Pi$ ».

Идентификационные данные и уровень защиты ПО измерительных компонентов приведены в описаниях типа на соответствующие средства измерений.

Метрологически значимое ΠO — библиотека расчетного модуля ΠO «Экология $M \Pi$ » обеспечивает расчет значений величин, включая вычисление разового, массового и валового выбросов.

В метрологически незначимой части ПО осуществляются следующие функции:

- контроль целостности программных кодов ПО, настроечных и калибровочных констант;
 - визуализация и передача измерительной информации;
 - контроль общих неисправностей (связь, конфигурация).

Идентификационные данные библиотеки расчетного модуля ΠO «Экология $M\Pi$ » приведены в таблице 1. Уровень защиты «средний» в соответствии с Рекомендацией P 50.2.077-2014.

Таблица 1

Идентификационные данные (признаки)	Значение
Номер версии (идентификационный номер) ПО	v.0.1.1
Цифровой идентификатор	9632095c
Алгоритм вычисления цифрового идентификатора	CRC32

Метрологические и технические характеристикиОсновные метрологические характеристики Систем приведены в таблице 2. Основные технические характеристики Систем приведены в таблицах 3-4.

Таблица 2 – Метрологические характеристики ИК Систем

Измеряе-	Диапазон	вон Лиапазон ПИП: тип, диапазон выход- ВИК: типы МВВ, вы-		ы ПИПТ: ТИП, ДИАПАЗОН ВЫХОД- ВИК: ТИПЫ МВВ, ВЫ-	ПИП: ТИП, ДИАПАЗОН ВЫХОД- ВИК: ТИПЫ МВВ, ВЫ-		и погрешности К
мая вели- чина	измерений	показаний	— I — ного сигнала характери - — I холной сигнал характе	l · · · · ·	Основной	В рабочих условиях	
1	2	3	4	5	6	7	
Температура газопылевого потока отходящих дымовых газов	от +223,15 до +1073,15 K (от -50 до +800 °C)	от -50 до +800°C	Метран-281 от 4 до 20 мА (соответствует диапазону показаний) γ _{ot} =±0,4 % в поддиапазоне от +223,15 до +773,15 К включ. γ _{ot} =±0,3 % в поддиапазоне св. +773,15 до +1073,15 К γ _{tt} =±0,05 %/10 °C	SLA-2I-4-20 от 4 до 20 мА $\gamma_b=\pm0,25~\%=>$ Модуль NLS-8AI Показания / цифровой сигнал $\gamma_{ai}=\pm0,2~\%$	δ _{ик} =±4 %	δик=±6 %	
Абсолютное давление газопылевого потока отходящих дымовых газов	от 40 до 115 кПа	от 0 до 115 кПа	Метран-150 от 4 до 20 мА (соответствует диапазону показаний) $\gamma_{op}{=}\pm0,12~\%$ $\gamma_{tp}{=}\pm0,11~\%/10~^{\circ}\mathrm{C}$	SLA-2I-4-20 от 4 до 20 мА $\gamma_b=\pm0,25~\%$ => Модуль NLS-8AI Показания / цифровой сигнал $\gamma_{ai}=\pm0,2~\%$	δик=±(65/Р) %	δик=±(95/Р) %	

1	2	3	4	5	6	7
Скорость и объемный расход потока газопылевого потока отходящих дымовых газов	от 5 до 20 м/с от 67525 до 270100 м ³ /ч (см. примечание 2)	от 0 до 20 м/с от 0 до 270100 м ³ /ч (см. примечание 2)	Метран-150 совместно с SDF-F-22 от 4 до 20 мА (соответствует диапазону показаний) $\delta_s{=}{\pm}1,0~\%$ $\delta_{np}={\pm}20~\%$ $\gamma_{op}{=}{\pm}0,14~\%$ $\gamma_{tp}{=}{\pm}0,6~\%/10~°C$	SLA-2I-4-20 от 4 до 20 мА $\gamma_b = \pm 0,2 \%$ => Модуль NLS-8AI Показания / цифровой сигнал $\gamma_{ai} = \pm 0,2 \%$	δик=±22 %	δ _{гр.ик} =±25 %
Массовая концентрация оксида азота	от 0 до 335 мг/м ³	от 0 до 335 мг/м ³	Метран АГ (УФ-фотометрия) от 4 до 20 мА (соответствует диапазону показаний) $\gamma_c = \pm 9$ % в поддиапазоне от 0 до 20 мг/м³ включ. $\delta_c = \pm 8$ % в поддиапазоне св. 20 до 54 мг/м³ включ. $\delta_c = \pm 7$ % в поддиапазоне св. 54 до 335 мг/м³	Модуль NLS-8AI Показания / цифровой сигнал $\gamma_{ai} = \pm 0,2~\%$	от 0 до 20 м δ _{ик} == в поддиапаз	поддиапазоне мг/м ³ включ. ±25 % воне св. 20 до мг/м ³
Массовая концентрация диоксида азота	от 0 до 257 мг/м ³	от 0 до 257 мг/м ³	Метран АГ (УФ-фотометрия) от 4 до 20 мА (соответствует диапазону показаний) $\gamma_c = \pm 12 \%$ в поддиапазоне от 0 до 63 мг/м³ включ. $\delta_c = \pm 7 \%$ в поддиапазоне св. 63 до 169 мг/м³ включ. $\delta_c = \pm 6 \%$ в поддиапазоне св. 169 до 257 мг/м³	Модуль NLS-8AI Показания / цифровой сигнал $\gamma_{ai}\!\!=\!\!\pm0,\!2~\%$	от 0 до 63 м δ _{ик} =±25 % в	поддиапазоне иг/м ³ включ. поддиапазоне 257 мг/м ³

1	2	3	4	5	6	7
Массовая концентрация диоксида серы	от 0 до 250 мг/м ³	от 0 до 250 мг/м ³	Метран АГ (УФ-фотометрия) от 4 до 20 мА (соответствует диапазону показаний) $\gamma_c = \pm 10 \%$ в поддиапазоне от 0 до 29 мг/м³ включ. $\delta_c = \pm 8 \%$ в поддиапазоне св. 29 до 250 мг/м³	Модуль NLS-8AI Показания / цифровой сигнал $\gamma_{ai} = \pm 0,2~\%$	от 0 до 29 м δ _{ик} =±25 % в	поддиапазоне иг/м ³ включ. поддиапазоне 250 мг/м ³
Массовая концентрация оксида углерода	от 0 до 1250 мг/м ³	от 0 до 1250 мг/м ³	Метран АГ (ИК-спектрометрия с диодным лазером) от 4 до 20 мА (соответствует диапазону показаний) $\gamma_c=\pm 10~\%$ в поддиапазоне от 0 до 12,5 мг/м³ включ. $\delta_c=\pm 8~\%$ в поддиапазоне св. 12,5 до 62,5 мг/м³ включ. $\delta_c=\pm 7~\%$ в поддиапазоне св. 62,5 до 125 мг/м³ включ. $\delta_c=\pm 6~\%$ в поддиапазоне св. 125 до 500 мг/м³ включ. $\delta_c=\pm 6~\%$ в поддиапазоне св. 125 до 500 мг/м³ включ. $\delta_c=\pm 5~\%$ в поддиапазоне св. 500 до 1250 мг/м³	Модуль NLS-8AI Показания / цифровой сигнал γ _{ai} =±0,2 %	от 0 до 12,5 $\delta_{\text{ик}} = \pm 28 \%$ в св. 12,5 до вкл $\delta_{\text{ик}} = \pm 25 \%$ в	поддиапазоне мг/м ³ включ. поддиапазоне о 62,5 мг/м ³ нюч. поддиапазоне 1250 мг/м ³
Объемная доля кис- лорода	от 0 до 25 %	от 0 до 25 %	Метран АГ (Циркониевый) от 4 до 20 мА (соответствует диапазону показаний) γ_c =±6 % в поддиапазоне от 0 до 1 % включ. δ_c =±5 % в поддиапазоне св. 1 до 25 %	Модуль NLS-8AI Показания / цифровой сигнал $\gamma_{ai} = \pm 0,2~\%$	от 0 до 1 δ _{ик} =±10 % в	поддиапазоне % включ. поддиапазоне до 25 %

1	2	3	4	5	6	7
Объемная доля водя- ного пара	от 0,5 % до 40,0 %	от 0 до 40 %	Метран АГ (Емкостной) от 4 до 20 мА (соответствует диапазону показаний) $\delta_c = \pm 5$ % в поддиапазоне от 0,5 до 1,0 % включ. $\delta_c = \pm 7$ % в поддиапазоне св. 1 до 5 % включ. $\delta_c = \pm 6$ % в поддиапазоне св. 5 до 20 % включ. $\delta_c = \pm 5$ % в поддиапазоне св. 20 до 40 %	Модуль NLS-8AI Показания / цифровой сигнал үаі=±0,2 %	от 0,5 до 1 $\delta_{\text{ик}}$ =±15 % в 3 св. 1 до 5 $\delta_{\text{ик}}$ =±8 % в по 5 до 20 $\delta_{\text{ик}}$ =±6 % в по	поддиапазоне ,0 % включ. поддиапазоне % включ. ддиапазоне св. % включ. ддиапазоне св. 240 %

Примечания:

1. Используемые обозначения:

 γ_{ot} – пределы допускаемой основной приведенной к разности между максимальным и минимальным значениями диапазона измерений погрешности ПИП температуры, °C;

γ_{tt} – пределы допускаемой приведенной к разности между максимальным и минимальным значениями диапазона выходного сигнала дополнительной погрешности ПИП температуры, вызванной изменением температуры окружающего воздуха в границах рабочих условий относительно нормальных условий, % на 10 °C;

 γ_b – пределы допускаемой приведенной к 16 мА погрешности барьера искрозащиты в рабочих условиях, %;

 γ_{ai} – пределы допускаемой приведенной к 16 мА погрешности модуля ввода в рабочих условиях, %;

 $\delta_{\text{ик}}$ – пределы допускаемой относительной погрешности ИК, %;

Р – измеренное значение абсолютного давления, кПа;

Tipodonkemie tuomitus 2							
1	2	3	4	5	6	7	

- δ_{s} пределы допускаемой относительной погрешности SDF в рабочих условиях, %;
- $\delta_{\text{пр}}$ пределы допускаемой дополнительной относительной погрешности измерений скорости потока, вызванной несоответствием места установки SDF требованиям технической документации, %;
- γ_{op} пределы допускаемой основной приведенной к разности между максимальным и минимальным значениями диапазона измерений погрешности ПИП давления, %;
- γ_{tp} пределы допускаемой приведенной к разности между максимальным и минимальным значениями диапазона измерений дополнительной погрешности ПИП давления, вызванной изменением температуры окружающего воздуха в границах рабочих условий относительно нормальных условий, % на $10~^{\circ}\mathrm{C}$;
 - $\delta_{\text{гр.ик}}$ границы допускаемой относительной погрешности ИК (доверительная вероятность 0,95), %;
- γ_c пределы допускаемой приведенной к верхней границе поддиапазона измерений погрешности ПИП объемной доли/массовой концентрации веществ в рабочих условиях, %;
- δ_c пределы допускаемой относительной погрешности ПИП объемной доли/массовой концентрации веществ в рабочих условиях, %;
 - уик пределы допускаемой приведенной к верхнему значению поддиапазона измерений погрешности ИК, %.
- 2. Указан диапазон показаний в единицах объемного расхода газопылевого потока отходящих дымовых газов, приведенного к нормальным условиям (температура 0 °C, абсолютное давление 101325 Па).

Таблица 3 – Условия эксплуатации измерительных компонентов Систем

Компонент	Температура окружающего воздуха, °С	Температура воздуха внутри термочехла, °C, не менее	Относительная влажность воздуха, %, не более			
Нормальные условия						
ПИП	от +15 до +25	-	от 30 до 80			
Рабочие условия						
Оборудование стойки ST1, включая Метран АГ и компоненты ВИК	от +10 до +30	-	80			

Примечание — Условия эксплуатации ПИП согласно эксплуатационной документации на них. Нижняя граница температуры окружающей среды для ПИП Метран-150 при размещении в термочехле минус $20\,^{\circ}\mathrm{C}$.

Таблица 4 – Основные технические характеристики Систем

Наименование характеристики	Значение
Напряжение электрического питания, В	от 207 до 440
Частота электрического питания, Гц	от 49 до 51
Потребляемая мощность, Вт, не более	15000
Внутренний диаметр газохода, мм	2484
Рабочая температура газопылевого потока, °С	от 171 до 197

Знак утверждения типа

наносится на титульные листы руководств по эксплуатации.

Комплектность средства измерений

Комплектность каждого экземпляра Систем представлена в таблице 5.

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система автоматического контроля промышленных выбросов загрязняющих веществ в атмосферу газоперекачивающих агрегатов ГПА-32 «Ладога»	-	1 шт.
Руководство по эксплуатации	D-28-01-00-2023-(Gx- 32Cxx)-IN-MC-201.101	1 экз.
Паспорт	D-28-01-00-2023-(Gx- 32Cxx)-QA-MM-201.101	1 экз.

Примечание — В обозначении руководств по эксплуатации и паспортов символами $\langle x \rangle$ и $\langle x \rangle$ обозначена изменяемая часть обозначения, уникальная для каждого конкретного экземпляра систем.

Сведения о методиках (методах) измерений

приведены в разделах «Методика выполнения измерений» и «Использование по назначению» руководств по эксплуатации.

Нормативные документы, устанавливающие требования к средству измерений

Постановление Правительства Российской Федерации от 16 ноября 2020 г № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений» (п.п. 3.1.3, 3.9, 3.10, 3.13);

Постановление Правительства Российской Федерации от 13 марта 2019 г. № 263 «О требованиях к автоматическим средствам измерения и учета показателей выбросов загрязняющих веществ и (или) сбросов загрязняющих веществ, техническим средствам фиксации и передачи информации о показателях выбросов загрязняющих веществ и (или) сбросов загрязняющих веществ в государственный реестр объектов, оказывающих негативное воздействие на окружающую среду»;

Постановление Правительства Российской Федерации от 13 марта 2019 г. № 262 «Об утверждении Правил создания и эксплуатации системы автоматического контроля выбросов загрязняющих веществ и (или) сбросов загрязняющих веществ»;

Приказ Федерального агентства по техническому регулированию и метрологии от 31 декабря 2020 г. № 2315 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»;

Приказ Федерального агентства по техническому регулированию и метрологии от 6 декабря 2019 г. № 2900 «Об утверждении Государственной поверочной схемы для средств измерений абсолютного давления в диапазоне $1 \cdot 10^{-1}$ - $1 \cdot 10^{7}$ Па»;

Приказ Федерального агентства по техническому регулированию и метрологии от 25 ноября 2019 г. № 2815 «Об утверждении Государственной поверочной схемы для средств измерений скорости воздушного потока»;

Приказ Федерального агентства по техническому регулированию и метрологии от 19 ноября 2024 г. № 2712 «Об утверждении Государственной поверочной схемы для средств измерений температуры»;

ГОСТ Р 70805-2023 «Автоматические измерительные системы для контроля выбросов загрязняющих веществ. Методика расчета массового выброса»;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Правообладатель

Общество с ограниченной ответственностью «РусХимАльянс» (ООО «РусХимАльянс») ИНН 9705082619

Юридический адрес: 188480, Ленинградская обл., р-н Кингисеппский, г. Кингисепп, ул. Воровского, д. 18а, эт./помещ. 3/306

Почтовый адрес: 199106, г. Санкт-Петербург, Шкиперский проток, д. 12, к. 2, стр. 1

Изготовитель

Общество с ограниченной ответственностью «Метран Проект» (ООО «Метран Проект») ИНН 7453347966

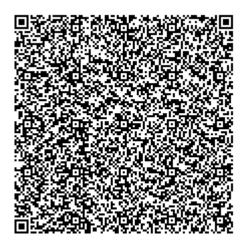
Адрес: 454103, Челябинская обл., Челябинский г.о., вн. р-н Центральный, г. Челябинск, пр-кт Новоградский, д. 15, стр. 1, помещ. 310

Испытательные центры

Федеральное бюджетное учреждение «Научно-исследовательский центр прикладной метрологии – Ростест» (ФБУ «НИЦ ПМ – Ростест»)

Юридический адрес: 117418, г. Москва, Нахимовский пр-кт, д. 31

Адрес осуществления деятельности: 119361, г. Москва, вн. тер. г. муниципальный округ Очаково-Матвеевское, ул. Озерная, д. 46


Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»)

Адрес: 190005, Санкт-Петербург, Московский пр-кт, д. 19 Телефон (факс): +7 (812) 251-76-01, +7 (812) 713-01-14

E-mail: info@vniim.ru Web-сайт: www.vniim.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.314555.

