450

УТВЕРЖДАЮ

НАЧАЛЬНИК ГЦИ "ВОЕНТЕСТ" 32 ГНИИИ МО РФ

В. Н. Храменков

2003 г.

ИНСТРУКЦИЯ ATTEHЮАТОРЫ AGILENT 8496 A ФИРМЫ "AGILENT TECHNOLOGIES", США. МЕТОДИКА ПОВЕРКИ

1 Введение

- 1.1 Данная методика распространяется на аттенюаторы Agilent 8496 A (далее Agilent 8496 A), зав. №№ МУ 41110222, МУ 41110246, МУ 41110543 и устанавливает порядок проведения их первичной и периодической поверки.
 - 1.2 Межповерочный интервал один год.

2 Операции поверки

При поверке выполняют операции, представленные в таблице 1.

Таблица 1.

	Наименование операции	Номер	Проведение операции при	
		пункта		
		Методи-	первич-	периодиче-
		ки	ной	ской
			поверке	поверке
1	2	3	4	5
1.	Внешний осмотр	8.1	да	да
2.	Опробование	8.2	да	да
3.	Определение метрологических характеристик	8.3	да	да
3.1	Определение относительной погрешности установ-	8.3.1	да	да
	ки ослабления			L
3.2	Определение КСВН	8.3.2	да	да

3 Средства поверки

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, представленное в таблице 2.

Таблица 2.

Наименование	Требуемые технические характ	Рекомендуемое		
средств поверки		средство по-	Приме-	
	Пределы измерения	Погрешность	верки (тип)	чание
1. Генератор сиг-	Частотный диапазон: 1,78 -	Относительная погреш-	Γ4-79	
налов высокочас- тотный	2,56 ГГц.	ность установки частоты 10 ⁻²		
2. Генератор сигналов высокочастотный	Частотный диапазон: 2,56 – 4 ГГц.	Относительная погрешность установки частоты 10^{-2}	Г4-80	
3. Генератор сигналов высокочастотный	Частотный диапазон: 10 кГц – 1,3 ГГц.	Относительная погрешность установки частоты 10^{-5}	Г4-192	Ė
6. Установка для измерения ослаб- ления	Диапазон частот 0,0001 — 17,44 ГГц. Динамический диапазон 0-140 дБ	Относительная погрешность измерения ослабления 0,02 – 2,5 дБ	ДК1-16	
7. Линия измери- тельная	Частотный диапазон: 10 кГц — 18 ГГц. Диапазон измерения КСВН 1,01 – 5.	Относительная погрешность измерения КСВН ± 5К	P1-34	

- 3.2 Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.
- 3.3 Полученные при поверке значения метрологических характеристик должны быть не хуже значений, приведенных в таблице 3.

No	Характеристика	Значение
1	Относительная погрешность измерения ослабления, дБ	10 дБ - \pm 0,2;
		20 дБ - \pm 0,4;
		30 дБ $-\pm 0,5$;
		40 дБ $-\pm 0.7$;
		50 дБ $-\pm 0.8$
		60 дБ - \pm 1,0;
		70 дБ - ± 1,2;
		80 дБ - ± 1,3;
	물리에 대하는 그 그 그 그 그 가장 없었다.	90 дБ - ± 1,5;
		100 дБ - \pm 1,6;
		110 дБ - ± 1,8.
2	КСВН, не более	1,5

4 Требования к квалификации поверителей

К проведению поверки Agilent 8496 A допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации и документацией по поверке и имеющие право на поверку.

5 Требования безопасности

- 5.1 К работе на Agilent 8496 А допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.
- 5.2 Запрещается проведение измерений при отсутствии или неисправности заземления аппаратуры, входящей в состав Agilent 8496 A.

6 Условия поверки

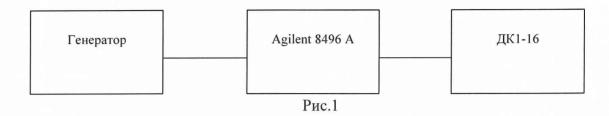
- 6.1 Поверка проводится при нормальных условиях (составляющая погрешности измерений любой из характеристик от действия совокупности влияющих величин не превышает 35 % допускаемой основной погрешности).
- 6.2 Agilent 8496 A обеспечивает работоспособность с заданными точностными характеристиками при следующих климатических условиях:

температура окружающего воздуха от 0 до 45 °C; относительная влажность воздуха при температуре до 20 °C, %, не более 80 %; атмосферное давление 630-800 мм рт. ст.;

7 Подготовка к поверке

При подготовке к поверке выполняют следующие операции: проверяют готовность Agilent 8496 A в целом согласно руководству по эксплуатации; выполняют пробное (10-15 мин.) включение Agilent 8496 A.

8 Проведение поверки


8.1 Внешний осмотр

При проведении внешнего осмотра проверяют: соответствие состава Agilent 8496 A технической документации.

8.2 Опробование

При проведении опробования собирается структурная схема в соответствии с рис.1

С генератора Г4-192 подать сигнал частотой 1 ГГц через Agilent 8496 A на установку ДК1-15. Если на установке осуществляется измерение сигнала, то Agilent 8496 A работоспособен.

- 8.3 Определение метрологических характеристик
- 8.3.1 Определение относительной погрешности установки ослабления.

Проверка диапазона ослаблений и относительной погрешности прибора во всем частотном диапазоне заключается в определении погрешности для каждой отметки лимба в результате измерения ослабления с помощью установки ДК1-16 на частотах 100 кГц, 500 МГц; 1; 2; 3; 4 ГГц, в соответствии с рис.1.

Электрическая схема подключения измерительных приборов к поверяемому прибору приведена в ТО на установку ДК1-16. Измерение ослабления производится в соответствии с ТО на установку Д1-14. Производится трехкратное измерение разностного ослабления 0-10; 0-20 ...0-110 dB путем последовательного переключения лимба прибора. По результатам трехкратных измерений вычисляется среднее значение разностного ослабления для каждого положения лимба на частотах 100 кГц, 500 МГц; 1; 2; 3; 4 ГГц (Afcp).

Погрешность для каждой отметки лимба на частотах частотах 100 к Γ ц, 500 М Γ ц; 1; 2; 3; 4 Γ Γ ц (δ Af) вычисляется по формуле:

$$\delta Af = AH - Afcp$$
,

где Ан - номинальное значение ослабления.

Результаты измерений записываются в протокол и должны удовлетворять значениям приведенным в документации на Agilent 8496 A. В противном случае Agilent 8496 A бракуется и направляется в ремонт.

8.3.2 Определение КСВН Agilent 8496 A.

Определение КСВН осуществляется на частотах 100 к Γ ц, 500 М Γ ц; 1; 2; 3; 4 Γ Γ ц, в соответствии с рис.2.

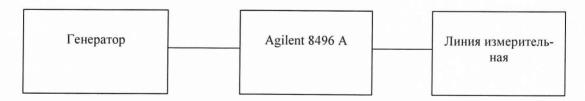


Рис.2.

Определение КСВН проводится в соответствии с ТО на измерительную линию Р1-34. Результаты измерений записываются в протокол и должны удовлетворять значениям, приведенным в документации на Agilent 8496 A. В противном случае Agilent 8496 A бракуется и отправляется в ремонт.

9 Оформление результатов поверки

- 9.1 Положительным результатом поверки считают соответствие полученных технических характеристик Agilent 8496 A характеристикам, приведенным в описании типа на Agilent 8496 A.
- 9.2 При положительных результатах поверки оформляется Свидетельство о поверке с указанием полученных технических характеристик.
- 9.3. При отрицательных результатах поверки Agilent 8496 A бракуется и отправляется в ремонт.

Начальник отдела ГЦИ СИ "Воентест" 32 ГНИИИ МО РФ

И. Блинов