451

УТВЕРЖДАЮ

НАЧАЛЬНИК ГНИ "ВОЕНТЕСТ" 32 ГНИИИ МО РФ

В. Н. Храменков

2003 г.

ИНСТРУКЦИЯ АТТЕНЮАТОРЫ РЕЗИСТОРНЫЕ AGILENT 8490 D ФИРМЫ "AGILENT TECHNOLOGIES", США МЕТОДИКА ПОВЕРКИ

1 Введение

- 1.1 Данная методика распространяется на аттенюаторы резисторные Agilent 8490 D (далее Agilent 8490 D), зав. №№ 05969, 05970, 00888, 00908, 00735, 00737 и устанавливает порядок проведения их первичной и периодической поверки.
 - 1.2 Межповерочный интервал один год.

2 Операции поверки

При поверке выполняют операции, представленные в таблице 1.

Таблица 1

	Наименование операции	Номер	Проведение операции	
		пункта	при	
		Методи-	первич-	периодиче-
		ки	ной	ской
			поверке	поверке
1	2	3	4	5
1.	Внешний осмотр	8.1	да	да
2.	Опробование	8.2	да	да
3.	Определение метрологических характеристик	8.3	да	да
3.1	Определение относительной погрешности ослабле-	8.3.1	да	да
	РИН			
3.2	Определение КСВН	8.3.2	да	да

3 Средства поверки

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, представленное в таблице 2.

Таблица 2

				Габлица .
Наименование средств поверки	Требуемые технические характеристики средства по- верки		Рекомендуе- мое средство	Примеч
	Пределы измерения	Погрешность	поверки (тип)	ание
1	2	3	4	5
1. Установка для измерения ослаб- ления	Полоса (10 ⁻⁴ ÷37,5) ГГц Пределы измерения ослабления:0-100 дБ	Погрешность измерения ослабления: ± (0,031÷0,3) дБ.	Д1-14	
2. Установка для измерения ослаб- ления	Полоса (37,5÷53,57) ГГц Пределы измерения ослабления: 0-80 дБ	Погрешность измерения ослабления: ± (0,1+0,001A+ +10(A-80)/20) дБ.	ДК1-15/1	
3. Генератор сигналов высокочастотный	Частотный диапазон: 1,78 – 2,56 ГГц.	Относительная погрешность установки частоты 10^{-2}	Г4-79	
4. Генератор сигналов высокочастотный	Частотный диапазон: 2,56 – 4 ГГц.	Относительная погрешность установки частоты 10^{-2}	Г4-80	
5. Генератор сигналов высокочастотный	Частотный диапазон: 4 – 5,6 ГГц.	Относительная погрешность установки частоты 10^{-2}	Г4-81	
6. Генератор сигналов высокочастотный	Частотный диапазон: 6 — 17,87 ГГц.	Относительная погрешность установки частоты 10^{-2}	Г4-111	
7. Генератор сигналов высокочастотный	Частотный диапазон: 17,44 – 25,95 ГГц.	Относительная погрешность установки частоты 10^{-2}	Г4-155	

8. Генератор сигналов высокочастотный	Частотный диапазон: 25,96 – 37,5 ГГц.	Относительная погрешность установки частоты 10^{-2}	Γ4-156
9. Генератор сиг- налов высокочас- тотный	Частотный диапазон: 37,5 – 53,57ГГц.	Относительная погрешность установки частоты ± 0,3 %	Γ4-178
10. Генератор сигналов высокочастотный	Частотный диапазон: 10 кГц – 1,3 ГГц.	Относительная погрешность установки частоты 10^{-5}	Γ4-192
11. Линия измери- тельная	Частотный диапазон: 10 кГц – 18 ГГц. Диапазон измерения КСВН 1 - 5	Относительная погрешность измерения КСВН ± 5 %	P1-34
12. Линия измерительная	Частотный диапазон: 18 – 36 ГГц. Диапазон измерения КСВН 1 – 5	Относительная погрешность измерения КСВН ± 2 %	P1-46
13. Линия измерительная	Частотный диапазон: 36 – 53,57 ГГц. Диапазон измерения КСВН 1 - 5	Относительная погрешность измерения КСВН ± 5 %	P1-39

3.2 Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2

3.3 Полученные при поверке значения метрологических характеристик должны быть не хуже значений, приведенных в таблице 3.

Таблица 3

No	Характеристика	Значение
1	Относительная погрешность измерения ослабления, дБ	10 дБ - ± 0,2;
		20 дБ - \pm 0,4;
-		$30 дБ - \pm 0,5;$
		$40 \ дБ - \pm 0,7;$
		50 дБ $-\pm 0.8$
		60 дБ - \pm 1,0;
		70 дБ - ± 1,2;
		80 дБ - ± 1,3;
		90 дБ - ± 1,5;
		100 дБ - ± 1,6;
		110 дБ - ± 1,8.
2	Значения КСВН	Для аттенюаторов номи-
		налом 10 и 30 дБ:
		на частотах от 100 кГц до
		26,5 ГГц, не более - 1,15;
		на частотах от 26,5 до 40
		ГГц, не более - 1,25;
		на частотах от 40 до 50
		ГГц, не более - 1,45;
		для аттенюаторов номина-
		лом 40 дБ:
		на частотах от 100 кГц до
		26,5 ГГц, не более - 1,08.
3 1 7		на частотах от 26,5 до 40
		ГГц, не более - 1,15;

на частотах от 40 до 50
ГГц, не более - 1,25

4 Требования к квалификации поверителей

К проведению поверки Agilent 8490 D допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации и документацией по поверке и имеющие право на поверку.

5 Требования безопасности

5.1 К работе на Agilent 8490 D допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.

6 Условия поверки

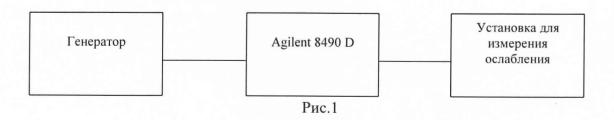
- 6.1 Поверка проводится при нормальных условиях (составляющая погрешности измерений любой из характеристик от действия совокупности влияющих величин не превышает 35 % допускаемой основной погрешности).
- 6.2 Agilent 8490 D обеспечивает работоспособность с заданными точностными характеристиками при следующих климатических условиях:

температура окружающего воздуха от 0 до 45 °C; относительная влажность воздуха при температуре до 20 °C, %, не более 80 %; атмосферное давление 630-800 мм рт. ст.;

7 Подготовка к поверке

При подготовке к поверке выполняют следующие операции: проверяют готовность Agilent 8490 D в целом согласно руководству по эксплуатации; выполняют пробное (10-15 мин.) включение Agilent 8490 D.

8 Проведение поверки


8.1 Внешний осмотр

При проведении внешнего осмотра проверяют: соответствие состава Agilent 8490 D технической документации;

8.2 Опробование

При опробовании собирается структурная схема в соответствии с рис.1

С генератора Г4-192 подать сигнал частотой 1 ГГц через Agilent 8490 D на установку Д1-14. Если на установке осуществляется измерение сигнала, то Agilent 8490 D работоспособен.

8.3 Определение метрологических характеристик

8.3.1 Определение относительной погрешности установки ослабления.

Определение погрешности ослаблений во всем частотном диапазоне заключается в определении погрешности для каждого аттенюатора на установки Д1-14 на частотах 100 к Γ ц, 3; 6; 9; 12; 15; 18; 21; 24; 26,5; 30; 33; 37,5 Γ Γ ц и на установке ДК1-15/1 на частотах 37,6; 40; 43; 46; 50 Γ Γ ц в соответствии с рис.1.

Электрическая схема подключения измерительных приборов к поверяемому прибору приведена в ТО на установки Д1-14 и ДК1-15/1 соответственно. Измерение ослабления про-изводится в соответствии с ТО на установки Д1-14 и ДК1-15/1. Производится трехкратное измерение ослабления каждого Agilent 8490 D, входящего в комплект путем последовательного подключения установкам Д1-14 и ДК1-15/1. По результатам трехкратных измерений вычисляется средне значение ослабления каждого Agilent 8490 D на частотах 100 кГц, 3; 6; 9; 12; 15; 18; 21; 24; 26,5; 30; 33; 37,5; 37,6; 40; 43; 46; 50 ГГц (Afcp).

Погрешность для каждого Agilent 8490 D на частотах 100 кГц, 3; 6; 9; 12; 15; 18; 21; 24; 26,5; 30; 33; 37,5; 37,6; 40; 43; 46; 50 ГГц (δ Af) вычисляется по формуле:

$$\delta Af = AH - Afcp$$
,

где Ан - номинальное значение ослабления.

Результаты измерений записываются в протокол и должны удовлетворять значениям приведенным в документации на Agilent 8490 D. В противном случае результат испытаний считается отрицательным.

8.3.2 Определение КСВН Agilent 8490 D.

Определение КСВН осуществляется в соответствии с рис.2, в диапазоне до 18 ГГц на частотах 100 кГц, 500 МГц; 1; 4; 8; 12; 16; 18 ГГц в соответствии с ТО на измерительную линию Р1-34, диапазоне от 18 до 36 ГГц на частотах 21; 24; 27; 31; 34; 36 ГГц в соответствии с ТО на измерительную линию Р1-46, в диапазоне от 36 до 50 ГГц на частотах 39; 41; 44; 47; 50 ГГц в соответствии с ТО на измерительную линию Р1-39.

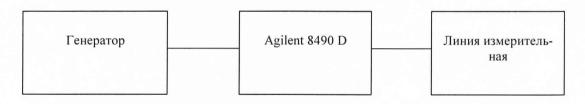


Рис.2.

Результаты измерений записываются в протокол и должны удовлетворять значениям приведенным в документации на Agilent 8490 D. В противном случае Agilent 8490 D бракуется и отправляется в ремонт.

9 Оформление результатов поверки

- 9.1 Положительным результатом поверки считают соответствие полученных технических характеристик Agilent 8490 D характеристикам, приведенных в описании типа на Agilent 8490 D.
- 9.2 При положительных результатах поверки оформляется Свидетельство о поверке с указанием полученных технических характеристик.
- 9.3. При отрицательных результатах поверки Agilent 8490 D бракуется и отправляется в ремонт.

Начальник отдела ГЦИ СИ "Воентест" 32 ГНИИИ МО РФ

И. Блинов