497

УТВЕРЖДАЮ НАЧАЛЬНИК ГЦИ СИ "Воентест" 32 ГНИИИ МО РФ

В.Н. Храменков

2003 г.

инструкция

СИСТЕМА ИЗМЕРЕНИЙ ПАРАМЕТРОВ ИЗДЕЛИЙ СИП ТПИ

МЕТОДИКА ПОВЕРКИ

ВВЕДЕНИЕ

Настоящая методика распространяется на Систему измерений параметров изделий СИП ТПИ, изготовленную в единичном экземпляре , зав. № 01.

Система предназначена для использования в качестве рабочего средства измерений и контроля параметров изделия и технологических параметров установок теплопрочностных испытаний (УТПИ) и статических испытаний (зал статических испытаний) изделий.

Методика устанавливает методы и средства первичной и периодической поверки СИП ТПИ.

Перечень принятых сокращений:

СИП ТПИ- система сбора, обработки, отображения и документирования в режиме реального времени результатов измерения параметров.

ИК – измерительный канал;

МП – методика поверки;

СКО – среднее квадратичное отклонение;

НД – нормативные документы.

1 Операции поверки

При проведении поверки должны быть выполнены операции, указанные в табл. 1.

Таблица 1

Наименование операции методике	Номер пункта
1. Внешний осмотр	п.6.1.
2. Опробование	п. 6.2.
3. Проверка измерительных каналов при статических измерениях	п. 6.3.
4. Обработка результатов измерений при проверке измерительных каналов при статических измерениях	п. 6.4
5. Оформление результатов поверки	п. 7.

2 Средства поверки

При проведении поверки должны быть применены средства измерений, указанные в табл. 2.

Таблица 2

Наименование, тип средства измерений	Значения основных метрологических характеристик
1. Вольтметр В7-34А	Предел основной допускаемой погрешности 2,5 %
2. Потенциометр постоянного тока ПП 63, ГОСТ 9245- 79	Класс точности 0,05
3. Калибратор напряжения П327	Предел основной допускаемой погрешности (2U+0,4) мкВ
4. Потенциометр постоянного тока P363-1, ГОСТ 9245- 79.	Класс точности 0,001
5. Термометр стеклянный ртутный, ТЛ-4 ГОСТ 28498-90	Предел измерений от 0 до 50 0 С, цена деления $0.1~^{0}$ С
6. Источник питания постоянного тока Б5-47	Нестабильность выходного напряжения 0,01 %

Примечание:

- Допускается использовать другие средства измерений с метрологическими характеристиками, соответствующими указанным в табл.2.
- Применяемые средства измерений должны иметь утвержденный тип и должны быть поверенными.

3 Требования к квалификации

К проведению поверки допускаются лица, имеющие квалификацию поверителя, а также допущенные к проведению поверки службой Главного метролога предприятия, эксплуатирующего систему СИП ТПИ.

4 Требования к соблюдению правил техники безопасности

При проведении поверки должны выполняться требования безопасности, изложенные в руководствах по эксплуатации СИП ТПИ, а также в руководствах по эксплуатации применяемых средств поверки.

5 Условия проведения поверки

При проведении поверки должны быть соблюдены следующие условия для аппаратуры из состава СИП ТПИ:

-температура окружающей среды

от +5 до +35 °C;

-относительная влажность

от 50 до 90%;

-атмосферное давление

от 86 кПа до 106 кПа;

(от 645 до 795 мм рт.ст.);

Питание системы должно осуществляться от сети переменного тока частотой (50 ± 1) Γ ц напряжением от 200 до 240 B.

Условия, при которых применяются средства поверки должны соответствовать НД на них.

6 Проведение поверки

6.1 Внешний осмотр

- 6.1.1. Проверить комплектность и маркировку поверяемого образца СИП ТПИ и убедиться в их соответствии указанному в паспорте (формуляре) на СИП ТПИ.
 - 6.1.2. Поверяемый образец СИП ТПИ не должен иметь:
 - -механических повреждений;
 - -неудовлетворительного крепления разъемов:
- -прокручивания креплений и элементов плавной регулировки СИП ТПИ;
 - -некачественной экранировки линий связи;
 - -некачественного состояния заземления;
 - -наличия следов коррозии.

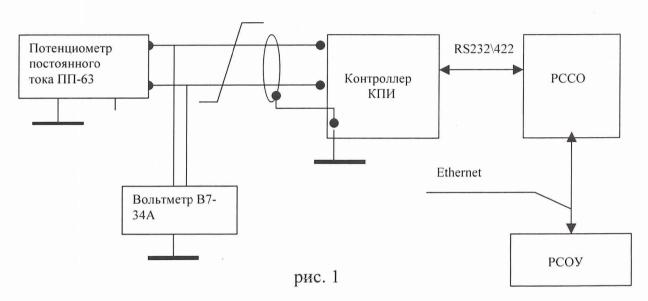
6.2. Опробование

Опробование функционирования СИП ТПИ состоит в проведении пробных статических измерений по каждому исследуемому ИК путем изменений задаваемого воздействия от нижнего предельного значения до верхнего. При этом должно наблюдаться изменение выходного сигнала в пределах, указанных в табл. 3

Таблица 3.

	іица э.	
Изме- рительный канал	Измеряемые величины	Уровень сигнала измерительной информации
I_1	Температура на поверхности изделия	< 50 мВ
I_2	Температура на поверхности изделия	< 100 мВ
I_3	Температура на поверхности изделия	< 50 мВ
I_4	Температура на поверхности изделия	< 50 мВ
I ₅	Давление в изделии	< 5 B
I_6	Давление на входе каркаса нагревателей	< 5 B
I_7	Давление на выходе каркаса нагревателей	< 5 B
I ₈	Напряжение питания потенциометрических датчиков (датчиков давления и перемещения)	< 10 B
I ₉	Сила, прилагаемая к изделию	< 10 B
I ₁₀	Перемещения элементов конструкции изделия	< 5 B
I ₁₁	Напряжение на нагревателях установки	< 20 mB
I ₁₂	Сила тока в нагревателях установки	< 20 мВ
I ₁₃	Напряжение управления агрегатами ртутно-преобразрвательной подстанции.	< 20 мВ

6.3 Проверка измерительных каналов при статических измерениях


Проверка ИК при статических измерениях выполняется методом пря-

мых измерений параметров, эквивалентных выходным сигналам измерительной информации первичных измерительных преобразователей.

При этом, для каждого ИК при прямом и обратном направлении изменения параметра выполняется не менее 10 измерений во всем рабочем диапазоне изменения параметра, разбитом, примерно, на 10 равных частей.

6.3.1 Поверка каналов измерений температуры термопарами ТХА, ТПР и ТВР

Собрать рабочую схему, согласно рыс. 1.

При проверке каналов измерений температуры термопарами ТХА, ТПР и ТВР в качестве рабочих эталонов использовать потенциометр постоянного тока ПП-63 (Р-363-1) и ртутный термометр ТЛ-4. Дополнительно использовать вольтметр В7-34 для контроля значений выходных сигналов ПП-63.

Включить ПП-63 и подготовить СИП ТПИ к работе с проверяемым каналом с выводом результатов измерения на рабочую станцию системного оператора (РССО) и одну из станций операторов управления нагревом (РСОУ).

Задавая прибором ПП-63 значения термо-э.д.с., представленные в таблицах 4-7, произвести измерения с помощью СИП ТПИ на прямом и обратном ходе проверки с занесением результатов и измерений в память системы.

Таблица 4. Канал ADS (ТХА)

Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8 .	9	10	11	12
Значение темпера- туры, °C	-100,0	0,0	50,0	100,0	150,0	200,0	250,0	300,0	350,0	400,0	450,0	500,0
Значение э.д.с, за- даваемое калибра- тором, мВ.	-3,553	0,0	2,022	4,095	6,137	8,137	10,151	12,207	14,292	16,395	18,513	20,640

Таблица 5. Канал ADS (B537) (TXA)

Порядковый номер ступени нагруже- ния	1	2	3	4	5	6	7	8	9	10	11	12
Значение температуры, °С	-100	0,0	50,0	150,0	300,0	450,0	600	750,0	900,0	1050,0	1300,0	1350,0
Значение э.д.с, задаваемое калибратором, мВ.	-3,55 3	0,00	2,022	6,137	12,207	18,513	24,90	31,214	37,325	43,202	52,398	54,125

Таблица 6. Канал ADS (ТПР)

Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение температуры, град. С	0	100	180	360	540	720	900	1080	1260	1440	1620	1800
Значение э.д.с, задаваемое калибратором, мВ.	0	0,033	0,140	0,632	1,450	2,569	3,957	5,583	7,414	9,405	11,491	13,585

Таблица 7. Канал ADS (ТВР)

Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение температуры, град. С	0	150	250	500	750	1000	1250	1500	1750	2000	2250	2500
Значение э.д.с, задаваемое калибратором, мВ.	0,000	2,086	3,682	7,908	12,112	16,125	19,872	23,306	26,411	29,181	31,580	33,638

Произвести обработку результатов измерений, согласно п.6.4.

Система считается выдержавшей проверку по данному разделу методики, если максимальное значение относительной погрешности ИК, будет не более ± 0.1 %.

6.3.2 Проверка измерительных каналов давления и перемещений

Собрать рабочую схему, согласно рис. 2.

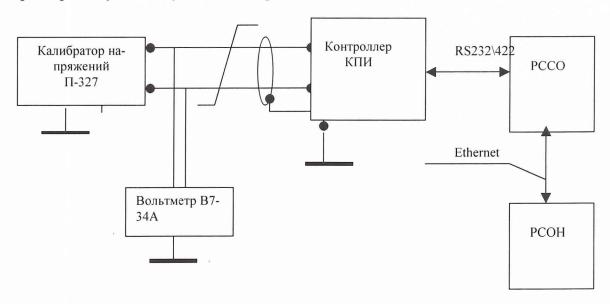


рис. 2

При выполнении проверки каналов измерений давления и перемещения в качестве рабочих эталонов использовать калибратор напряжения П-327. Дополнительно использовать вольтметр В7-34 для контроля значений выходных сигналов П-327.

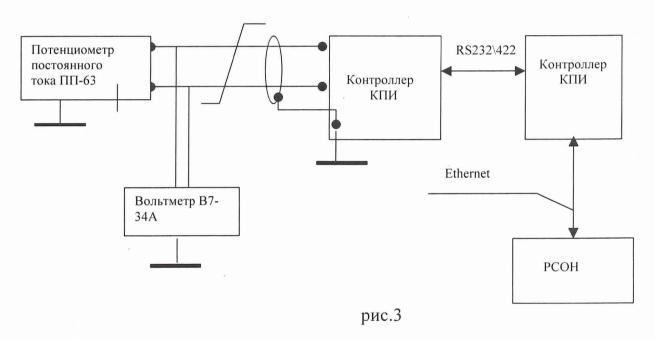
Подготовить СИП ТПИ к работе с проверяемым каналом, подключив выход прибора П-327 на вход проверяемого канала системы СИП ТПИ, с выводом результатов измерений на мониторе РССО и одной из станций РСОНВадавая на выходе прибора П-327 ступени значения напряжения от 0 до 5 В и контролируя эти значения вольтметром В7-34А на каждой ступени, выполнить измерения с помощью СИП ТПИ на прямом и обратном ходе проверки с занесением результатов измерений в память системы.

Значения, задаваемых напряжений на выходе прибора П-327 для каждого ИК, представлены в таблице 8, 9.

a			

Порядковый номер степени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение давления (Р) МПа	В соот	соответствии с градуировочной характеристикой первичных измерительных преобразователей (паспортные данные)										
Значение, задаваемое при- бором П-327, В	0,00	0,20	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00	4,50	5,00

Таблица 9


Порядковый номер степени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение перемещения (S), мм	В соот	соответствии с градуировочной характеристикой первичных измерительных преобразователей (паспортные данные)										
Значение, задаваемое при- бором П-327, В	0,00	0,2	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00	4,50	5,00

Произвести обработку результатов измерений, согласно п.6.4.

Система считается выдержавшей проверку по данному разделу методики, если максимальное значение относительной погрешности ИК, будет не более ± 0.1 %.

6.3.3 Проверка каналов измерений силы

Собрать рабочую схему, согласно рис.3.

При проверке каналов измерений силы тензомостами ТВ и РА в качестве рабочих эталонов использовать потенциометр постоянного тока ПП-63 (Р-363-1). Дополнительно использовать вольтметр В7-34А для контроля значений выходных сигналов ПП-63.

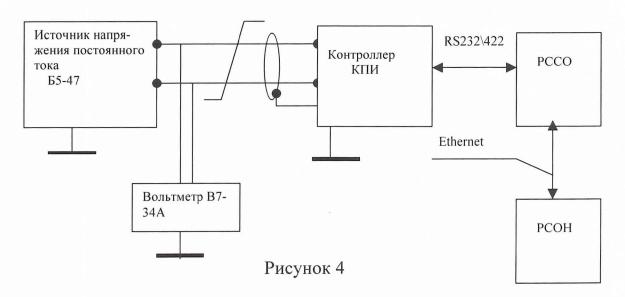
Подключить выход прибора ПП-63 на вход проверяемого канала системы СИП ТПИ и подготовить систему к работе с проверяемым каналом с выводом результатов измерений на мониторе РССО и одну из станций оператора РСОН.

Задавая на выходе прибора ПП-63 значения напряжения, указанные в таблицах 10, 11 и контролируя эти значения вольтметром В7-34А на каждой ступени, выполнить измерения с помощью СИП ТПИ на прямом и обратном ходе проверки с занесением результатов измерений в память системы.

Таблица 10 (ТВ)

Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8	9	10	11	12	
Значение силы	В соот	соответствии с градуировочной характеристикой первичных измерительных преобразователей (паспортные данные)											
Значение напряжения, задаваемое калибратором, мВ.	0	1,00	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	18,00	20,00	

Таблица 11 (РА)


Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение силы	В соот	соответствии с градуировочной характеристикой первичных измерительных преобразователей (паспортные данные)										
Значение напряжения, задаваемое калибратором, мВ.	0,00	0,50	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00	10,00

Произвести обработку результатов измерений, согласно п.6.4.

Система считается выдержавшей проверку по данному разделу методики, если максимальное значение относительной погрешности ИК, будет не более $\pm 0,2$ %.

6.3.4. Проверка канала измерений напряжения питания потенциометрических датчиков

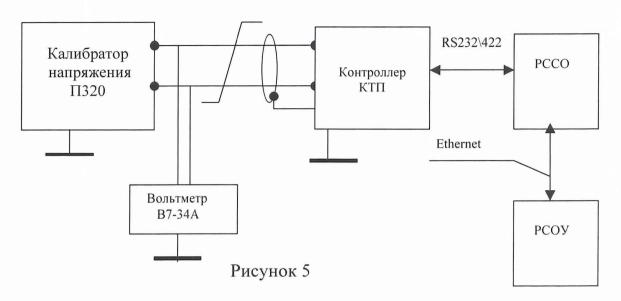
Собрать рабочую схему, согласно рис.4.

При проверке каналов измерений напряжения питания потенциометрических датчиков в качестве рабочих эталонов использовать источник напряжения постоянного тока Б5-47. Дополнительно использовать вольтметр В7-34 для контроля значений выходных сигналов прибора Б5-47.

Подключить выход прибора Б5-47 на вход проверяемого канала системы СИП ТПИ и подготовить систему к работе с выводом результатов измерений на монитор РССО и монитор одной из станций РСОН. Задавая на выходе прибора Б5-47 значения напряжения, указанные в таблице 12 и контролируя эти значения вольтметром В7-34А на каждой ступени, выполнить измерения с помощью СИП ТПИ на прямом и обратном ходе проверки с занесением результатов измерений в память системы.

Таблица 12

Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение напряжения, задаваемое калибратором, В.	0,00	0,50	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00	10,00


Произвести обработку результатов измерений, согласно п.6.4.

Система считается выдержавшей проверку по данному разделу методики, если максимальное значение относительной погрешности ИК, будет не более ± 0.1 %.

6.3.5. Проверка каналов измерений напряжения на нагревателях

зон нагрева

Собрать рабочую схему, согласно рис.5.

При проверке каналов измерений напряжения на нагревателях зон нагрева в качестве рабочих эталонов использовать калибратор напряжения П320. Дополнительно использовать вольтметр В7-34 для контроля значений выходных сигналов калибратора напряжения П320.

Подключить выход калибратора напряжения П320 на вход проверяемого канала системы СИП ТПИ и подготовить систему к работе с проверяемым каналом с выводом результатов измерений на монитор РССО и монитор одной из станций оператора РСОУ.

Задавая на выходе калибратора П320 значения напряжения, указанные в таблице 13 и контролируя эти значения вольтметром В7-34А на каждой ступени, выполнить измерения с помощью СИП ТПИ на прямом и обратном ходе проверки с занесением результатов измерений в память системы.

Таблица 13

Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение напряжения, задаваемое образцо- вым прибором, В.	0,0	45,0	90,0	135,0	180,0	225,0	270,0	315,0	360,0	405,0	450,0	500,0

Произвести обработку результатов измерений, согласно п.6.4.

Система считается выдержавшей проверку по данному разделу методики, если максимальное значение относительной погрешности ИК, будет не более ± 0.6 %.

6.3.6. Проверка каналов измерений тока в нагревателях зон нагре-

Собрать рабочую схему, согласно рис.6.

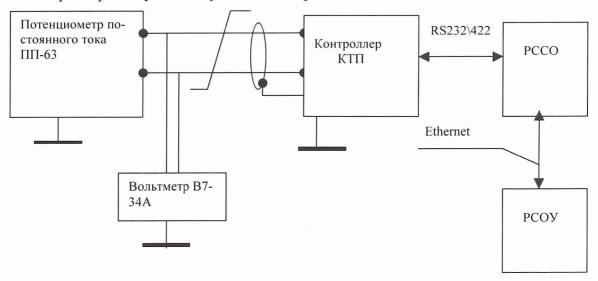


Рисунок 6

При проверке каналов измерения тока в нагревателях зон нагрева в качестве рабочих эталонов использовать потенциометр постоянного тока ПП-63. Дополнительно использовать вольтметр В7-34 для контроля значений выходных сигналов прибора ПП-63.

Подключить выход прибора ПП-63 на вход проверяемого канала системы СИП ТПИ и подготовить систему к работе с проверяемым каналом с выводом результатов измерений на монитор РССО и монитор одной из станций оператора РСОУ.

Задавая на выходе прибора ПП-63 значения напряжения, указанные в таблице 14 и контролируя эти значения вольтметром В7-34А на каждой ступени, выполнить измерения с помощью СИП ТПИ на прямом и обратном ходе проверки с занесением результатов измерений в память системы.

Таблица 14

Taominga.	•											
Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение напряжения, задаваемое калибратором, мВ.	0,0	6,0	12,0	18,0	24,0	30,0	36,0	42,0	48,0	56,0	62,0	75,0

Произвести обработку результатов измерений, согласно п.6.4.

Система считается выдержавшей проверку по данному разделу методики, если максимальное значение относительной погрешности ИК, будет не более ± 0.6 %.

6.3.7 Проверка каналов измерений напряжения управления агрегатами РПП-35

Собрать рабочую схему, согласно рис.7.

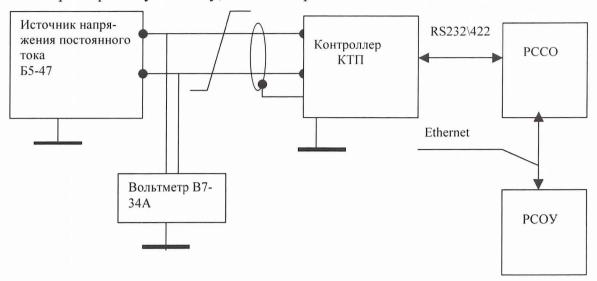


Рисунок 7

При проверке каналов измерений напряжения управления агрегатами РПП-35 в качестве рабочих эталонов использовать источник напряжения постоянного тока Б5-47. Дополнительно использовать вольтметр В7-34 для контроля значений выходных сигналов прибора Б5-47.

Подключить выход прибора Б5-47 на вход проверяемого канала системы СИП ТПИ и подготовить систему к работе с проверяемым каналом с выводом результатов измерения на монитор РССО и монитор одной из станций оператора РСОУ.

Задавая на выходе прибора Б5-47 значения напряжения, указанные в таблице 15 и контролируя эти значения вольтметром В7-34А на каждой ступени, выполнить измерения с помощью СИП ТПИ на прямом и обратном ходе проверки с занесением результатов измерений в память системы.

Таблица 15

Порядковый номер ступени нагружения	1	2	3	4	5	6	7	8	9	10	11	12
Значение напряжения, задаваемое калибратором, В.	0,00	1,00	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	18,00	20,00

Произвести обработку результатов измерений, согласно п.6.4.

Система считается выдержавшей проверку по данному разделу методики, если максимальное значение относительной погрешности ИК, будет не более ± 0.6 %.

6.4 Обработка результатов проверки измерительных каналов при статических измерениях

Подготовить систему СИП ТПИ к работе по обработке результатов поверки ИК при статических измерениях, для чего вызвать программу обработки результатов поверки каналов, которая использует следующие данные:

- m суммарное количество измерений на каждом уровне градуировки при прямом и обратном ходе;
- Р доверительная вероятность (Р=0,95);
- t коэффициент Стьюдента (выбирается в соответствии с Приложением 3 ОСТ 100487-83 в зависимости от m и P);
- q, Zl, Z2 коэффициенты определения доверительных интервалов (выбираются в соответствии с Приложением 1 ОСТ 100487-83, в зависимости от m и P).

Запустить СИП ТПИ в режиме обработки результатов поверки.

В данной программе вычисления осуществляются в следующей последовательности.

Систематическая составляющая погрешности $\Delta \mathrm{Cij}$ вычисляется по формуле:

$$\Delta C_{ij} = \frac{\sum_{\gamma=1}^{T_{uioM}} X_{ij\gamma M} + \sum_{\gamma=1}^{N_{ijE}} X_{ij\gamma E}}{N_{ijM} + N_{ijE}} - X_{ij}, \tag{1}$$

где: і - индекс номера канала;

ј - индекс контрольной точки диапазона;

ү - индекс номера наблюдений;

М - индекс прямого хода градуировки;

Б - индекс обратного хода градуировки;

NijM - число наблюдений в контрольной точке на прямом ходе градуировки;

NijБ - число наблюдений в контрольной точке на обратном ходе градуировки;

ХjjγМ - измеренное значение параметра в контрольной точке на прямом ходе градуировки;

ХіјүА - измеренное значение параметра в контрольной точке на обратном хо-

де градуировки;

Хіј - действительное значение параметра в контрольной точке.

Систематическая погрешность Θ іј вычисляется по формуле: Θ іј= $R\Delta C$ іј; (2)

где: R - коэффициент, определяемый принятой вероятностью; при доверительной вероятности $P=0.95, \quad R=1.1$

Средние арифметические значения результатов наблюдений на прямом ходе градуировки вычисляются по формуле:

$$\overline{X} = \frac{\sum_{\gamma=1}^{N_{ijM}} X_{ijM}}{N_{ijM}}$$
(3)

Средние арифметические значения результатов наблюдений на обратном ходе градуировки вычисляются по формуле:

$$\overline{X} = \frac{\sum_{\gamma=1}^{N_{ijM}} X_{ijM}}{N_{ijM}} \tag{4}$$

Случайная составляющая погрешности вычисляется по формуле:

$$S\left(\mathring{\Delta}\right) = \sqrt{\frac{\sum_{\gamma=1}^{N_{ijM}} \left(X_{ijM} - \overline{X_{ijM}}\right)^2 + \sum_{\gamma=1}^{N_{ijE}} \left(X_{ijE} - \overline{X_{ijE}}\right)^2}{N_{ijM} + N_{ijE} - 1}}$$
(5)

Суммарное СКО результата измерений вычисляется по формуле:

$$S(\Delta) = \sqrt{\frac{\Theta^2_{ij}}{3} + S_{ij}^2 \left(\frac{\bullet}{\Delta}\right)}$$
 (6)

Основная погрешность вычисляется по формуле:

$$\Delta_{ij} = kS_{\Sigma ij} \begin{pmatrix} \bullet \\ \Delta \end{pmatrix} \tag{7}$$

где: k - коэффициент, зависящий от соотношения случайной и не исключенной систематической составляющей погрешности, определяется по формуле:

$$k = \frac{tS_{ij} \left(\stackrel{\bullet}{\Delta}\right) + \Theta_{ij}}{S_{ij} \left(\stackrel{\bullet}{\Delta}\right) + \sqrt{\frac{\Theta_{ij}^{2}}{3}}}$$
(8)

где: t - коэффициент, зависящий от величины доверительной вероятности и объема выборки N; при $P=0.9973\;$ и $N=10,\;$ $t=2.26\;$

Погрешность і-го канала комплекса устанавливается как максимальное значение погрешности Δ ії, наблюдаемой в контрольных точках диапазона.

Погрешность устройства, входящего в состав комплекса, устанавливается как максимальное значение из погрешностей каналов устройства.

7 Оформление результатов поверки

- 7.2 Положительные результаты поверки оформляют оттиском поверительного клейма в паспорте (формуляре) на СИП ТПИ или выдачей свидетельства о поверке установленного образца.
- 7.3 При отрицательных результатах поверки отдельного ИК аппаратура ИК подлежит изъятию из обращения. При этом на СИП ТПИ выписывается извещение о непригодности с указанием причин.
- 7.4 Применение СИП ТПИ в сферах государственного метрологического контроля и надзора с частично исправными ИК не допускается.

ВрИО начальника отдела ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

С.В.Маринко