СОГЛАСОВАНО

Директор УП «Атомтех»

В.А. Кожемякин

2002 г.

УТВЕРЖДАЮ

Тиректор БелГИМ

Н.А.Жагора

2002 r.

Спектрометр излучения человека СКГ-AT1316

> Методика поверки ТИАЯ.412151.006 МП МП.МН 1169-2002

Содержание

1	Вводная часть	
2	Операции поверки	000
3	Средства поверки	
4	Требования к квалификации поверителей	
5	Требования безопасности	
6	Условия поверки и подготовка к ней	
7	Проведение поверки	
8	Оформление результатов поверки	1
Пр	иложение А (рекомендуемое) Форма протокола поверки	

1 Вводная часть

- 1.1 Настоящая методика поверки распространяется на спектрометр излучения человека СКГ-АТ1316 (далее СИЧ), предназначенный для измерения активности инкорпорированных гамма-излучающих радионуклидов во всем теле человека.
- 1.2 Первичной поверке подлежат СИЧ утвержденного типа, выпускаемые из производства.
- **1.3** Периодической поверке подлежат СИЧ, находящиеся в эксплуатации или на хранении, через межповерочные интервалы.

Межповерочный интервал - 12 мес.

- 1.4 Внеочередной поверке до окончания срока действия периодической поверки подлежат СИЧ после ремонта, влияющего на метрологические характеристики. Внеочередная поверка после ремонта проводится в объеме, установленном для первичной поверки.
- 1.5 Поверка СИЧ должна осуществляется юридическими лицами государственной метрологической службы или аккредитованными поверочными лабораториями других юридических лиц.

2 Операции поверки

2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 2.1

Таблипа 2.1

	Номер	Проведение операции при	
Наименование операции	пункта методики	первич- ной поверке	периоди- ческой поверке
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Определение метрологических характеристик: 3.1 Определение диапазона энергий регистрируемого гамма-излучения и значения интегральной нелинейности (ИНЛ)	7.3.1	Да	Нет
3.2 Определение относительного энергетического разрешения для энергии 661,6 кэВ при измерении с радионуклидным источником ¹³⁷ Cs	7.3.2	Да	Да
3.3 Определение чувствительности СИЧ при измерении активности радионуклида ¹³⁷ Cs в фантоме, тела человека	7.3.3	Да	Нет
3.4 Определение эффективности регистрации СИЧ в пике полного поглощения (ППП) при использовании гамма-источника 137 Cs	7.3.4	Да	Нет
3.5 Определение эффективности регистрации СИЧ в ППП для энергии 661,6 кэВ при измерении стандартных образцов активности инкорпорированного радионуклида 137 Cs	7.3.5	Tex	а научно- пической порывшин рмативной

Отдел научно-технической информации и нермативной документации

Продолжение таблицы 2.1

	Номер	Проведение операции при	
Наименование операции	пункта методики	первич- ной поверке	периоди- ческой поверке
3.6 Определение основной относительной погрешности измерения активности радионуклида ¹³⁷ Cs в фантоме тела человека	7.3.6, 7.3.7, 7.3.8, 7.3.9	Да	Да
 Определение коэффициентов перехода к активности радионуклида ¹³⁷Cs в эталонном гамма- источнике 	7.3.10	Да	Нет
3.8 Определение минимальной измеряемой активности (МИА) радионуклида ¹³⁷ Cs в фантоме всего тела человека за время измерения один час при статистической погрешности 50 % (P=0,95).	7.3.11	Да	Нет

При получении отрицательных результатов при проведении операций поверка 2.2 должна быть прекращена.

3 Средства поверки

3.1 При проведении поверки должны применяться эталоны и вспомогательные средства поверки, указанные в таблице 3.1.

Таблица 3.1

Номер пункта методики	Наименование и тип эталонов и вспомогательных средств поверки	Основные метрологические характеристики
7.3.1	Комплект эталонных источников гамма-излучения типа ОСГИ-3	Энергия гамма-излучения от 50 до 3000 кэВ; активность 10^4 Бк, $\delta \le 6$ % (P=0,95)
7.3.4; 7.3.7; 7.3.9; 7.3.10	Эталонный источник гамма-излучения ¹³⁷ Cs типа ОСГИ-3	Активность (1,00±0,25)·10 ⁴ Бк
7.3.3; 7.3.5; 7.3.6; 7.3.8	Стандартные образцы (СО) активности инкорпорированного радионуклида ¹³⁷ Cs – унифицированный фантом, тип УФ-02Т	Активность ¹³⁷ Cs в CO от 0,56 до 39,6 кБк, δ ≤ 6 % (Р=0,95) Характеристики фантома приведены в приложении В РЭ.
7.3.2	Эталонный источник с радиопуклидом ¹³⁷ Cs, входящий в комплект поставки	Активность 9 кБк
7.3.4; 7.3.10	Держатель контрольного источника, входящий в комплект поставки	Расстояние источник-детектор (10,00 ± 0,15) см в точечной геометрии измерения
6.1	Термометр	Цена деления 1 °C. Диапазон измерений от 10 °C до 40 °C
6.1	Измеритель влажности	Диапазон измерения влажности от 20% до 90 %. Погрешность измерения не более ± 5 %

Продолжение таблицы 3.1

Номер пункта методики	Наименование и тип эталонов и вспомогательных средств поверки	Основные метрологические характеристики
6.1	Барометр	Цена деления 1 кПа. Диапазон измерения от 60 до 120 кПа
6.1	Дозиметр гамма-излучения типа ДКС-АТ1121, МКС-АТ6130	Нижняя граница диапазона измерения мощности амбиентного эквивалента дозы не более 0,1мкЗв/ч, основная погрешность не более ± 20 %
7.2	Материалы для проведения дезактивации блоков фантома - марля, ватные тампоны, спирт этиловый ректификованный	Спирт этиловый ректификованный из расчета 100 г на одну промывку

Примечание - Все средства измерений должны иметь действующие клейма и (или) свидетельства о поверке. Допускается применять другие средства измерений с метрологическими характеристиками, не хуже указанных.

4 Требования к квалификации поверителей

4.1 К проведению измерений при поверке и (или) обработке результатов измерений допускают лиц, аттестованных в качестве поверителей в установленном порядке.

5 Требования безопасности

- 5.1 По требованиям безопасности СИЧ соответствует требованиям, установленным, ГОСТ 30324.0 по классу защиты II для изделий типа В.
 - 5.2 Персональный компьютер должен иметь сертификат соответствия.
- 5.3 Кресло СИЧ должно быть устойчиво к опрокидыванию при размещении в нем обследуемого массой до 150 кг.
- При проведении поверки должны быть соблюдены требования СанПиН от 31.12.2013 № 137 Санитарные нормы и правила «Требования к обеспечению радиационной безопасности персонала и населения при осуществлении деятельности по использованию атомной энергии и источников ионизирующего излучения», СанПиН от 28.12.2012 № 213 Санитарные нормы и правила «Требования к радиационной безопасности» и ГН от 28.12.2012 № 213 Гигиенический норматив «Критерии оценки радиационного воздействия», а также требования безопасности, приведенные в руководстве по эксплуатации на СИЧ.
 - 5.5 Процесс поверки должен быть отнесен к работе с вредными условиями труда.

6 Условия поверки и подготовка к ней

6.1 Поверку необходимо проводить в следующих условиях:

температура окружающего воздуха
 от 15 °C до 25 °C;
 от тосительная влажность воздуха
 от 30 % до 80 %;
 атмосферное давление
 от 84 до 106 кПа;
 внешний фон гамма-излучения
 не более 0,20 мкЗв/ч;

- **6.2** В помещении, где проводится поверка, не должно быть посторонних источников ионизирующего излучения.
 - 6.3 Перед проведением поверки необходимо:
- а) ознакомиться с руководством по эксплуатации (РЭ) и руководством оператора (РО) на СИЧ;
 - б) подготовить СИЧ к работе в соответствии с разделом 4 РЭ (4.3-4.22);
- в) подготовить к работе ПК и средства поверки в соответствии с их технической документацией.

7 Проведение поверки

- 7.1 Внешний осмотр
- 7.1.1 При проведении внешнего осмотра должно быть установлено:
- а) соответствие комплектности поверяемого СИЧ требованиям раздела 1 РЭ (1.3) в объеме, необходимом для поверки;
 - б) наличие свидетсльства о предыдущей поверке (при периодической поверке);
- в) отсутствие на СИЧ загрязнений, механических повреждений, влияющих на его работоспособность.
 - 7.2 Опробование
 - 7.2.1 При проведении опробования проводят:
 - а) проверку работоспособности СИЧ;
 - б) подтверждение соответствия программного обеспечения.
- 7.2.2 Проверку работоспособности СИЧ проводят в соответствии с разделом 5 РЭ (5.3).
- 7.2.3 Подтверждение соответствия программного обеспечения (ПО) СИЧ состоит из проверки наличия и соответствия идентификационных данных и обеспечения защиты ПО «SICH1316» от несанкционированного доступа во избежание искажения результатов измерения.

Для проверки соответствия ПО необходимо проверить соответствие значений контрольной суммы, рассчитанной по методу MD5 и указанной в таблице 7.1

и нермативной документации

Таблипа 7.1

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентифи- кационный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
SICH1316	SICH 1316_rus.exe	1.5.3.10; 1.x.y.z*	5d964c0a623cb1bc736f630 7d8bd63a2**	MD5

^{*} х, у, z – составная часть номера версии ПО: х, у принимаются равными от 0 до 9; z принимается равной от 1 до 999;

Идентификационные данные для версии ПО 1.х.у. z вносятся в раздел «Свидетельство о приемке» руководства по эксплуатации и в протокол поверки при первичной поверке

Результаты опробования считают удовлетворительными, если после установления рабочего режима на экране появляется сообщение «Все параметры в норме» и идентификационные данные ПО соответствуют приведенным в таблице 7.1.

7.3 Определение метрологических характеристик

7.3.1 Определение диапазона энергий регистрируемого гамма-излучения и значения интегральной нелинейности (ИНЛ) провести с использованием эталонных гамма-источников, указанных в таблице 7.2.

Таблица 7.2

Обозначение радионуклида	⁵⁷ Co	¹³⁷ Cs	⁶⁰ Co
Энергия гамма-излучения, кэВ	122,1	661,6	1173; 1333

Провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3). Для каждой из указанных в таблице 7.2 энергий гамма-источника определить положение центроиды ППП по следующей методике:

- а) установить держатель на кресло СИЧ в соответствии с приложением Г (РЭ);
- б) разместить в держателе корпус N2 с гамма-источником;
- в) инициировать измерение аппаратурного спектра в соответствии с разделом 11 РО (11.2), при этом задать параметры набора: время, с 600; вес, кг 0; рост, см и возраст, лет произвольные значения. Номер канала спектра и соответствующие ему значения числа отсчетов и энергии определить с помощью подвижного маркера, используемого в соответствии с разделом 7 РО (7.6);
- г) оценить входную статистическую загрузку СИЧ по показаниям интегральной скорости счета, отображаемой в информационной строке. Она должна находиться в пределах от 500 до 2500 имп/с. При необходимости изменить запрузку, переместив корпус N2 в держателе, и инициировать новое измерение;
- д) провести интегрирование числа отсчетов в области ППП энергии, указанной в таблице 7.2, в соответствии с разделом 7 РО (7.6). В информационной стремс вотображается значение числа отсчетов в выделенной области (площадь ППП);
 - е) остановить измерение при достижении числа импульсов в ППП не менсе при достижении числа импульсов в ППП не менсе при пиформации

^{**} Контрольная сумма относится к версии ПО 1.5.3.10.

- ж) в соответствии с разделом 11 PO (11.8.1) провести анализ ППП, соответствующего энергии, указанной в таблице 7.2. Записать в рабочий журнал номер канала, соответствующий центроиде пика;
- и) используя результаты, полученные при проверке по 7.3.1 (б-ж) для всех источников, определить в соответствии с разделом 12 PO (12.2) ИНЛ.

Результаты поверки считать удовлетворительными, если:

- диапазон энергии регистрируемого гамма-излучения находится в пределах от 50 до 3000 кэВ;
 - значение ИНЛ не превышает ±1 %.
- 7.3.2 Определение относительного энсргетического разрешения СИЧ для энергии 661,6 кэВ при измерении с радионуклидным источником ¹³⁷Сѕ провести с использованием контрольного источника в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3);
- б) установить держатель с контрольным источником на кресло СИЧ в соответствии с приложением Γ (РЭ);
 - в) инициировать процесс проверки в соответствии с разделом 11 РО (11.1.2);
- г) по окончании проверки записать в рабочий журнал измеренное значение относительного энергетического разрешения, определяемого для энергии 661,6 кэВ радионуклида 137 Cs.

Результаты поверки считать удовлетворительными, если измеренное относительное энергетическое разрешение не превышает 12 %.

- 7.3.3 Определение чувствительности СИЧ при измерении активности радионуклида ¹³⁷Сs в фантоме тела человека провести с использованием унифицированного фантома УФ-02Т с набором стержневых радионуклидных источников ¹³⁷Сs в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соотретствии с разделом 5 РЭ (5.3);
- б) собрать фантом без радионуклидных источников (фоновый фантом), соответствующий типу фантома Ф1 в геометрии «сидя» в соответствии с инструкцией по его применению. Характеристики фантома приведены в приложении В РЭ;
 - в) разместить фоновый фантом на кресле СИЧ;
- г) провести набор спектра в соответствии ϵ разделом 11 PO (11.4), при этом задать параметры: время, $\epsilon 3600$; тип фантома F1.

По окончании измерения записать фоновый спектр на диск в соответствии с разделом 11 PO (11.4.1).

Примечания

- 1 Допускается использовать фоновый спектр, измеренный ранее, в случае неизменности геометрии и условий измерения.
- 2 Допускается использовать фоновый спектр, полученный с использованием функции «Генерирование рабочих фонов» в соответствии с разделом 5 РЭ (5.4.4);
- д) собрать в соответствии с инструкцией по применению фантома стандартный образец активности инкорпорированного радионуклида ¹³⁷Cs (активный фантом), соответствующий индексу фонового фантома, в геометрии «сидя»;
 - е) разместить активный фантом на кресле СИЧ;
- ж) провести набор спектра в соответствии с разделом 11 PO (11.23), при задать параметры: время, с 1800; вес, кг; рост, см и возраст, лет в соответствино маним фантома;

таблицено 7:4

информации и нермативной

и) по истечении времени набора записать измеренный спектр на диск в соответствии с разделом 10 PO (10.2). Вычесть из спектра стандартного образца фоновый спектр в соответствии с разделом 11 PO (11.10) и выполнить интегрирование результирующего спектра в интервале от 500 до 900 кэВ (точность установки маркеров \pm 3 кэВ) в соответствии с разделом 7 PO (7.6). Зафиксировать значение скорости счета N, имп/с.

Определить значение чувствительности Q (имп /(c·Бк)) по формуле

$$Q = N / A_0, \tag{1}$$

где A_0 - значение активности стандартного образца из свидетельства о поверке, Бк, пересчитанное на дату измерения с использованием функции «Пересчет активности» в соответствии с раздедом 12 PO (12.1.1);

- к) провести операции по 7.3.3 (ж-и) три раза и более. Вычислить среднее арифметическое значение;
- л) аналогично определить значения чувствительности СИЧ для фантомов типов Ф2, Ф4;

Результаты поверки считать удовлетворительными, если полученные значения чувствительности соответствуют таблице 7.3

Таблица 7.3

Ипдекс фантома	Чувствительность для ¹³⁷ Сs, 10 ⁻² имп /(с·Бк), не менее
Φ1	0,733
Ф2	0,525
Φ4	0,253

- **7.3.4** Определение эффективности регистрации СИЧ в ППП при использовании эталонного гамма-источника ¹³⁷Сѕ и держателя контрольного источника провести в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3);
- б) установить на кресло СИЧ держатель контрольного источника в соответствии с приложением Γ (РЭ);
- в) провести набор фонового спектра в соответствии с разделом 11 PO (11.3.1), при этом задать время, с -3600.

По окончании измерения записать фоновый спектр на диск в соответствии с разделом 11 PO (11.3.2).

Примечание - Допускается использовать фоновый спектр, измеренный ранее, в случае неизменности геометрии и условий измерения;

- г) разместить эталонный гамма-источник ¹³⁷Cs в корпусе N1 и установить корпус в держатель в соответствии с рисунком Г.1 РЭ (приложение Г). При этом обеспечивается расстояние от точечного источника до торпевой поверхности детектора, равное 10 см (точечная геометрия измерения);
- д) провести набор спектра источника в соответствии разделом 11 PO (11.2.1), при этом задать параметры: время, c 600; вес, $\kappa r 0$; рост, см и возраст, лет произвольные значения.

Примечание - Нулевое значение массы соответствует точечной геометрики

е) провести анализ ППП гамма-линии с энергией, указанной соответствии с разделом 11 PO (11.8.1).

2 Зам. ТИАЯ.77-2014 16.04.2015 KB-- 9

технической информации и нормативной

Оценить число импульсов, зарегистрированных в ППП.

Таблица 7.4

Радионуклид	137Cs
Энергия, кэВ	661,6
Активность эталонного источника, Бк	Из свидетельства на источник, пересчитанная на дату измерения
Период полураспада, сут	10964
Выход гамма-квантов, %	* 85,1
Поправка на каскадные совпадения	1,00

Измерение остановить при достижении количества импульсов в ППП не менее 10⁴;

- ж) записать измеренный спектр на диск в соответствии с разделом 10 РО (10.2);
- и) вычесть из спектра источника фоновый спектр в соответствии с разделом 11 PO (11.10);
- к) определить интегральное число импульсов в ППП в соответствии с разделом 11 PO (11.8.1);
- л) определить эффективность регистрации в ППП, ${\cal E}$, имп/фотон, используя данные таблицы 7.4, по формуле

$$\varepsilon_{j} = \frac{N_{j}}{A \cdot I_{j} \cdot t} 100 , \qquad (2);$$

где N_j – число отсчетов за вычетом пьедестала в ППП, соответствующем энергии E_j , имп:

A – активность эталонного источника на момент проведения измерений, Бк. Определяется по формуле $A = A_0$, K_p ,

где A_0 — значение активности из свидетельства об аттестации источника;

- K_p поправка на распад радионуклида, вычисляемая по формуле $K_p = e^{-0.693 \frac{r}{T}}$, где т время, прошедшее с момента аттестации образцового источника до момента измерения; T период полураспада радионуклида. T и τ должны быть выражены в одних и тех же единицах;
- I_{j} абсолютная интенсивность гамма-фотонов данной энергии радионуклида примененного источника, %;
- t время набора спектра («живое» время анализатора), с.
- м) провести операции по 7.3.4 (г-л) три раза и более. Вычислить среднее арифметическое значение $\overline{\mathcal{E}}$.

Результаты поверки считать удовлетворительными, если полученнос значение эффективности регистрации СИЧ не менее $1,750\cdot10^{-2}$ имп/фотон.

- 7.3.5 Определение эффективности регистрации СИЧ в ППП для энергии 661,6 кэВ при измерении стандартных образцов активности инкорпорированного радионуклида ¹³⁷Cs провести с использованием унифицированного фантома УФ-02Т с набором стержневых источников с радионуклидом ¹³⁷Cs в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3);
- б) разместить на кресле СИЧ фоновый фанком, соответствующий типу фантома Ф1, в геометрии «сидя»;
- в) провести набор спектра в соответствии с разделом 11 PO (11.4.1), при этом задать параметры: время, с 3600; тип фантома F1. По окончании измерения записать фоновый спектр на диск в соответствии с разделом 11 PO (11.4.2).

Примечания

i

- 1 Допускается использовать фоновый спектр, измеренный ранее, в случае неизменности геометрии и условий измерения.
- 2 Допускается использовать фоновый спектр, полученный с использованием функции «Генерирование рабочих фонов» в соответствии с разделом 5 РЭ (5.4.4);
- г) разместить на кресле СИЧ активный фантом с радионуклидом ¹³⁷Cs, соответствующий типу фонового фантома, в геометрии «сидя»;
- д) провести набор спектра в соответствии с разделом 11 РО (11.2.1), при этом задать параметры: время, с 1800; вес, кг; рост, см и возраст, лет в соответствии с типом фантома;
- е) провести анализ ППП, соответствующего энергии, указанной в таблице 7.5, в соответствии с разделом 11 PO (11.8.1).

Оценить количество импульсов, зарегистрированных в ППП.

Таблица 7.5

Z HOLLING THE	
Радионуклид	137Cs
Энергия, кэВ	661,6
Активность стандартного образца, Бк	Из свидетельства о поверке, пересчитанная на дату измерения
Период полураспада, сут	10964
Выход гамма-квантов, %	85,1

Измерение остановить при достижении количества импульсов в ППП не менее 10⁴;

- ж) записать измеренный спектр на диск;
- и) вычесть из спектра стандартного образца фоновый спектр в соответствии с разделом 11 PO (11.10);
- к) определить интегральное число импульсов в ППП в соответствии с разделом 11 PO (11.8.1);
- л) определить эффективность регистрации в ППП, \mathcal{E} имп/фотон, используя данные таблицы 7.5, по формуле (2); для стандартного образца активности;
- м) провести операции по 7.3.5 (г-л) три раза и более. Вычислить среднее арифметическое значение $\overline{\mathcal{E}}$;
- н) выполнить аналогичные измерения и определить эффективность регистрации по 7.3.5 (б-м) для фантомов типов Ф2, Ф4;

Результаты поверки считать удовлетворительными, если эффективности регистрации СИЧ в ППП соответствуют таблице 7.6.

Таблица 7.6

Энергия,	Эффективно	ость регистрации, 10 ⁻³ имп/ф	оотон, не менее
кэВ и	индекс фантома		
	Ф1	Φ2	Φ4
661,6	8,54±0,74	6,02±0,43	2,76±0,18

- 7.3.6 Определение основной относительной погрешности измерения активности радионуклида ¹³⁷Cs в фантоме тела человека провести с использованием унифицированного фантома типа УФ-02Т с набором стержневых источников ¹³⁷Cs. Определение основной относительной погрешности измерения активности радионуклида ¹³⁷Cs в фантоме тела человека с использованием алгоритма обработки с использованием радиометрического метода провести в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3);
- б) разместить на кресле СИЧ фоновый фантом, соответствующий тицу фантома Ф1 из набора типов Ф1 Ф6, в геометрии «сидя»;
- в) провести набор спектра в соответствии с разделом 11 PO (11.4.1), при этом задать параметры: время, с 3600; тип фантома F1. По окончании измерения записать фоновый спектр в качестве рабочего фона для соответствующего типа фантома в соответствии с разделом 11 PO (11.4.2).

Примечания

- 1 Допускается использовать фоновый спектр, измеренный ранее, в случае неизменности геометрии и условий измерения.
- 2 Допускается использовать фоновый спектр, полученный с использованием функции «Генерирование рабочих фонов» в соответствии с разделом 5 РЭ (5.4.4);
- г) разместить на кресле СИЧ активный фантом с радионуклидом ¹³⁷Сs, соответствующий типу фонового фантома Ф1, в геометрии «сидя»;
- д) провести набор спектра в соответствии с разделом 11 PO (11.2.1), при этом задать параметры: время, с -1800; вес, кг; рост, см и возраст, лет в соответствии с типом фантома;
- е) определить в процессе измерения значение активности A, Бк, радионуклида ¹³⁷Cs в фантоме в соответствии с разделом 11 PO (11.8.2). При достижении относительной статистической погрешности измерения менее 3 % набор спектра может быть остановлен;
- ж) определить значение доверительной границы погрешности измерения, %, с вероятностью 0,95 по формуле

$$\Delta = 1, 1 \cdot \sqrt{\theta_0^2 + \theta_1^2} \tag{3}$$

где θ_0 - погрешность аттестации стандартного образца активности, указанная в свидетельстве, %;

 θ_1 - относительная разпость показаний, %, рассчитываемая по формуле

$$\theta_1 = \frac{A - A_0}{A_0} \cdot 100$$

где A - измеренное значение активности, Бк;

отдел научнотехнической информация и нерма: напой документация

- A_0 значение активности стандартного образца из свидетельства о поверке, Бк, пересчитанное на дату измерения с использованием функции «Пересчет активности» в соответствии с разделом 11 PO (11.1.1);
- и) провести аналогичные измерения и определить значения доверительной границы погрешности для фантомов типов Ф2, Ф4.

Результаты поверки считать удовлетворительными, если ни одно из полученных по формуле (3) значений Δ не превышает ± 15 %.

- Определение основной относительной погрешности измерения активности радионуклида 137Cs в фантоме тела человека с использованием эталонного гамма-источника 137 Cs активностью $(1,00\pm0,25)\cdot10^4$ Бк $(\delta \le 6\% (P=0,95))$ и коэффициентов перехода, установленных для соответствующей геометрии измерения, провести в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3);
- б) провести набор спектра в соответствии с разделом 11 РО (11.3.1), при этом задать время, с - 3600.

По окончании измерения записать фоновый спектр на диск в соответствии с разделом 11 РО (11.3.2);

в) выбрать функцию «Задачи->Генерирование рабочих фонов» и инициировать создание рабочих фоновых спектров в соответствии с разделом 11 РО (11.6).

Примечание - Допускается использовать фоновые спектры, созданные ранее, в случае неизменности геометрии и условий измерения;

- г) установить на кресло СИЧ держатель контрольного источника в соответствии с рисунком Г.1 РЭ (приложение Г);
 - д) в корпус N1 поместить эталонный гамма-источник ¹³⁷Cs;
- e) установить корпус N1 в держатель в соответствии с рисунком Г.1 РЭ (приложение Г). При этом обеспечивается расстояние от точечного источника до торцевой поверхности детектора, равное 10 см;
- ж) провести набор спектра в соответствии с разделом 11 РО (11.2.1), при этом задать параметры: время, с - 300; вес, кг; рост, см и возраст, лет - в соответствии с индексом фантома типа Ф1 из набора типов Ф1 - Ф6;
- и) определить значение активности A, Бк, радионуклида 137Cs обработав спектр в соответствии с разделом 11 РО (11.8.2).

При достижении относительной статистической погрешности измерения менее 3 % пабор спектра может быть остановлен;

к) определить значение доверительной границы погрешности измерения Δ , %, с вероятностью 0,95 по формуле

$$\Delta = 1, 1 \cdot \sqrt{\theta_0^2 + \theta_1^2}, \tag{5}$$

Отдел научно-

технической информации и нормативной

где θ_0 - погрешность аттестации эталонного гамма-источника $^{137}\mathrm{Cs},$ указанная в свидетельстве о поверке, %;

 θ_1 - относительная разность показаний, $\frac{1}{2}$, рассчитываемая по формативенный инс

$$\theta_1 = \frac{K_f \cdot (A - A_0)}{A_0} \cdot 100,$$

Отдел научнотехнической нишкидофни и нермативной документации

- где K_f коэффициент перехода к активности радионуклида $^{137}\mathrm{Cs}$ в эталонном гамма-источнике, приведенный в таблице 7.7;
 - A измеренное значение активности эталонного гамма-источника $^{137}{
 m Cs}$, Бк:
 - A_0 значение активности эталонного гамма-источника $^{137}{
 m Cs}$ из свидетельства о поверке, Бк, пересчитанное на дату измерения с использованием функции «Перссчет активности» в соответствии с разделом 12 РО (12.1.1):

Таблица 7.7

Индекс фантома	Ф1	Ф2	Ф4
Коэффициент перехода K_f	3,06	4,32	9,22

л) провести аналогичные измерения и определить значения доверительной границы погрешности для фантомов типов Ф2, Ф4.

Результаты поверки считать удовлетворительными, если ни одно из полученных по формуле (5) значений Δ не превышает ± 15 %.

- Определение основной относительной погрешности измерения активности радионуклида ¹³⁷Cs в фантоме тела человека провести с использованием унифицированного фантома типа УФ-02T с набором стержневых источников 137Cs. Определение основной относительной погрешности измерения активности радионуклида 137Cs в фантоме тела человека с использованием алгоритма обработки с использованием спектрометрического метода провести в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3);
- б) разместить на кресле СИЧ фоновый фантом, соответствующий типу фантома Ф1 из набора типов Ф1 - Ф6, в геометрии «сидя»;
- в) провести набор спектра в соответствии с разделом 11 РО (11.4.1), при этом задать параметры: время, с – 3600; тип фантома - F1.

По окончании измерения записать фоновый спектр в качестве рабочего фона для соответствующего типа фантома в соответствии с разделом 11 РО (11.4.2).

Примечания

- 1 Допускается использовать фоновый спектр, измеренный ранее, в случае неизменности геометрии и условий измерения.
- 2 Допускается использовать фоновый спектр, полученный с использованием функции «Генерирование рабочих фонов» в соответствии с разделом 5 РЭ (5.4.4);
- г) провести измерение активности стандартного образца по 7.3.6 (е-ж):
- д) определить активность радионуклида ¹³⁷Cs по гамма-линии 661,6 кэВ в соответствии с разделом 11 РО (11.8.1). Измеренное значение активности А, Бк, отображается в информационной строке монитора ПК;
- е) определить значение доверительной границы погрешности измерения Д, %, с вероятностью 0,95 с использованием формул (3) и (4);
- ж) выполнить аналогичные измерения и определить значения доверительной границы погрешности для фантомов типов Ф2, Ф4.

Результаты поверки считать удовлетворительными, если ни одно из полученных по ственный инс. формуле (3) значений Δ не превышает ± 15 %.

информации и нермативной

- Определение основной относительной погрешности измерения активности радионуклида 137Cs в фантоме тела человека с использованием эталонного гамма-источника 137 Cs активностью $(1,00\pm0,25)\cdot10^4$ Бк $(\delta \le 6\% (P=0,95))$ и коэффициентов перехода провести в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3):
- б) провести набор спектра в соответствии с разделом 11 РО (11.3.1), при этом задать время, с – 3600. По окончании измерения записать фоновый спектр на диск в соответствии с разделом 11 РО (11.3.2);
- в) выбрать функцию «Задачи->Генерирование рабочих фонов» и инициировать создание рабочих фоновых спектров в соответствии с разделом 11 РО (11.6).

Примечание - Допускается использовать фоновые спектры, созданные ранес, в случае неизменности геометрии и условий измерения.

- г) провести измерение активности стандартного образца по 7.3.6 (е-ж);
- д) провести обработку измеренного спектра с вычитанием фона и определить активность радионуклида 137Cs по гамма-линии 661,6 кэВ в соответствии с разделом 11 PO (11.8.1). Измеренное значение активности А, Бк, отображается в информационной строке монитора ПК;
- е) определить значение доверительной границы погрешности измерения Δ , %, с вероятностью 0,95 с использованием формул (3) и (4);
- ж) выполнить аналогичные измерения и определить значения доверительной границы погрешности для фантомов типов Ф2, Ф4.

Результаты поверки считать удовлетворительными, если ни одно из полученных по формуле (3) значений Δ не превышает ± 15 %.

- 7.3.10 Определение коэффициентов перехода K_f к активности радионуклида $^{137}{\rm Cs}$ провести в следующей последовательности:
 - а) провести подготовку СИЧ к работе в соответствии с разделом 5 РЭ (5.3);
- б) провести набор спектра в соответствии с разделом 11 РО (11.3.1), при этом задать время, с - 3600. По окончании измерения записать фоновый спектр на диск в соответствии с разделом 11 РО (11.3.2).
- в) выбрать функцию «Задачи→Генерирование рабочих фонов» и инициировать создание рабочих фоновых спектров в соответствии с разделом 11 РО (11.6).

Примечание - Допускается использовать фоновые спектры, созданные ранее, в случае неизменности геометрии и условий измерения;

- г) установить на кресло СИЧ держатель контрольного источника в соответствии с рисунком Г.1 РЭ (приложение Г);
- д) в корпус N1 поместить эталонный гамма-источник ¹³⁷Cs с активностью $(1,00\pm0,25)\cdot10^4$ Бк ($\delta \le 6$ % при P=0,95);
- е) установить корпус N1 в держатель в соответствии с рисунком Г.1 РЭ (приложение Г);
- ж) провести набор спектра в соответствии с разделом 11 РО (11.2.1), при этом задать параметры: время, с - 3600; вес, кг; рост, см и возраст, лет - в соответствии с тином фантома Ф1 из набора типов Ф1-Ф6. При достижении относительной статистической погрешности измерения менее 3 % набор спектра может быть остановлен; Отдел научнатехнической

- и) определить значение активности A, Бк, радионуклида ¹³⁷Cs, обработав спектр в соответствии с разделом 11 PO (11.8.2) (радиометрический метод) и обработав спектр в соответствии с разделом 11 PO (11.8.1) (спектрометрический метод), полученные значения активности A, Бк, радионуклида ¹³⁷Cs записать в рабочий журнал;
- к) провести операции по 7.3.10 (ж-и) три раза и более. Вычислить среднее арифметическое значение активности A, Бк радионуклида 137 Cs;
- л) провести измерения спектров и определение значений активности A, Бк, по 7.3.10 (ж-к) для фантомов с типами Ф2, Ф4;
- м) рассчитать коэффициенты перехода K_f для фантомов типов Φ 1, Φ 2, Φ 4 по формуле

$$K_f = A_0 / \overline{A} \,, \tag{7}$$

где A_0 - значение активности эталонного гамма-источника ¹³⁷Cs из свидетельства о поверке, Бк, пересчитанное на дату измерения;

 \overline{A} - среднее значение активности, Бк, измеренное с использованием радиометрического и спектрометрического методов обработки.

Значения коэффициентов перехода K_f , рассчитанные по формуле (7) для фантомов типа Φ 1, Φ 2, Φ 4 с использованием радиометрического и спектрометрического методов, заносят в рабочий журнал.

7.3.11 Определение минимальной измеряемой активности (МИА) радионуклида 137 Cs в фантоме тела человека за время измерения один час при статистической погрешности 50 % (P=0,95) провести, рассчитывая значение МИА, Бк, для фантомов типов Φ 1, Φ 2, Φ 4 по формуле

$$M\mathcal{U}A = \frac{200 \cdot \sqrt{\frac{2n_{\phi}}{t}}}{\delta \cdot \varepsilon \cdot I_{\gamma}},\tag{8}$$

- где n_{ϕ} -скорость счета в энергетическом интервале от 590 до 735 кэВ фонового спектра, измеренного по 7.3.1 (а-в), имп/с. Значение определяют с помощью функции интегрирования в соответствии с разделом 7 РО (7.6);
 - t время измерения, равное 3600 с;
 - δ относительная статистическая погрешность однократного измерения с доверительной вероятностью 0,95, δ = 0,5;
 - эффективность регистрации в ППП в данной геометрии измерения, определяемая по 7.3.4, имп/фотон;
 - I_{γ} выход гамма-фотонов энергии 661,6 кэВ радионуклида $^{137}\mathrm{Cs},$ равный 85,1 %.

Результаты поверки считать удовлетворительными, если полученные значения МИА соответствуют данным, приведенным в таблице 7.8.

Таблина 7.8

Тип фантома	МИА, Бк, не более
Ф1	89
Ф2	101 Отдел ваучи
Φ4	203 (техническо информаци
	напландин и В

8 Оформление результатов поверки

- 8.1 Результаты поверки оформляют протоколом по форме, приведенной в приложении А.
 - 8.2 Положительные результаты поверки оформляют:
 - а) при выпуске СИЧ из производства:
- записью о поверке в разделе РЭ «Свидетельство о приемке», заверенной подписью и оттиском поверительного клейма;
- нанесением клейма-наклейки поверителя на верхнюю торцевую поверхность спинки кресла СИЧ;
- б) при эксплуатации и выпуске СИЧ после ремонта нанесением клейма-наклейки и выдачей свидетельства о поверке по форме в соответствии с приложением Г ТКП 8,003-2011.
- 8.3 При отрицательных результатах поверки эксплуатация СИЧ запрещается и выдается заключение о непригодности по форме в соответствии с приложением Д ТКП 8.003-2011 с указанием причин. При этом клеймо-наклейка поверителя подлежит погашению и свидетельство о поверке аннулируется.

От УП «АТОМТЕХ»

Главный метролог

Э В.Д.Гузов

2015

.И.Жуковский

2015

Приложение А (рекомендуемое) Форма протокола поверки

Протоко	л поверки спектрометр	ра излучения че	ловека СКГ-АТ1316 №	-
ДАТА П	ОВЕРКИ			
ПРОВЕР	КА ПРОВОДИЛАСЬ			
			ный орган	
	поверки:	Modern		
гемпература	-	°C;		
относительная і	влажность	%;		
атмосферное да	вление	кП	a;	
внешний фон га	амма-излучения	мкЗв/ч.		
Средства	а поверки			
1 D				
	ий осмотр:			
	anniackiny nobbawilani			
отсутствие мех	анических поврежден	an		
2 Опроб	ование:			
The second secon				
соответствие П	0			
Наименование	Идентификационное	Номер версии	Цифровой идентификатор	Алгоритм
ПО	наименование ПО	(идентифи-	ПО (контрольная сумма	вычисления
		кационный	исполняемого кода)	цифрового
		номер) ПО		идентифика-
				тора ПО
SICH1316	SICH 1316 rus.exe			MD5
				5,736.3

- 3 Определение метрологических характеристик:
- Проверка диапазона энергий регистрируемого гамма-излучения и значения интегральной нелинейности (ИНЛ)

Таблица 3.1

Обозначение радионуклида	⁵⁷ Co	¹³⁷ Cs	60°Co	
Энергия гамма-излучения, кэВ	122,1	661,6	1173; 1333	
Центроида, канал				
			Измеренное значение	По РЭ
ИНЛ, %				<±1
Разрешение по ¹³⁷ Сs, %				< 12

Определение чувствительности СИЧ при измерении активности радионуклида ¹³⁷Сѕ в фантоме всего тела человека.

Таблица 3.2

			Чувстви	тельность, 10	⁻² имп/ (с-Бк)
Тип фантома	Активность	Скорость	измере	нная	Q_0 по РЭ,
	Αη, Бк	счета N, имп/с	Q	$\overline{\mathcal{Q}}$	не менее
Φ1					
Ф2					
Φ4					

- Определение эффективности регистрации СИЧ в геометрии измерения:
- а) точечная с гамма-источником ¹³⁷Cs

Таблица 3.3

		Активность	Скорость	Эфс	фективность 10 ⁻² имп/	регистрации, фотон
Нуклид			счета в ППП, имп/с	измеренная		$arepsilon_0$ по РЭ, не менее
		ЬК		ε	$\bar{\varepsilon}$	
¹³⁷ Cs	661,6					

б) фантом с радионуклидом 137Cs

Таблица 3.4

Тип фантома	Активность	Скорость			ии, 10 ⁻³ имп/фотон
	стандартного образца A_{θ} , Бк	счета N, имп/с	ε	енная $\overline{\mathcal{E}}$	\mathcal{E}_0 по РЭ, не менее
Ф1					
Ф2					
Ф4					

- 3.4 Определение основной относительной погрешности измерения активности радионуклида $^{|37}$ Cs:
 - а) с использованием радиометрического метода:

Таблица 3.5

Тип фантома	Активность стандартного образца A_{θ} , Бк	Активность измеренная <i>А</i> , Бк	Значение доверительной границы погрешности измерения Δ , %
Ф1			
Ф2			
Φ4			

Примечание - $\Delta = 1,1 \cdot \sqrt{\theta_0^2 + \theta_1^2}$,%,

где θ_0 - погрешность аттестации стандартного образца активности, из свидетельства, %;

 $\theta_{\rm l}$ - относительная разность показаний, %, рассчитываемая по формуле

$$\theta_1 = \frac{A-A_0}{A_0} \cdot 100$$
 или по формуле $\theta_1 = \frac{K_f \cdot (A-A_0)}{A_0} \cdot 100$

б) с использованием спектрометрического метода:

Таблица 3.6

Тип фантома	Активность стандартного образца A_{θ} , Бк	Активность измеренная A , Бк	Значение доверительной границы погрешности измерения Δ , %
Ф1			
Ф2			
Ф4			

Примечание - $\Delta = 1, 1 \cdot \sqrt{\theta_0^2 + \theta_1^2}, \%,$

где θ_0 - погрешность аттестации стандартного образца активности, из свидетельства, %;

 $heta_1$ - относительная разность показаний, %, рассчитываемая по формуле

$$heta_1=rac{A-A_0}{A_0}\cdot 100$$
 или по формуле $heta_1=rac{K_f\cdot (A-A_0)}{A_0}\cdot 100$

3.5 Определение коэффициентов перехода K_f к активности радионуклида $^{137}\mathrm{Cs}$ в эталонном гамма-источнике

Таблица 3.6

Индекс фантома	Коэффициент	перехода K_f
	Радиометрический метод	Спектрометрический метод
Ф1		1
Ф2		
Φ4		

Выводы			
Свидетельство	No	ОТ	
(извещение о неп	ригодности)		
Поверку провел			, i

1 1

Лист регистрации изменений

Изм.		Іомера лист			Всего	No	Входящий	Подп.	Дата
	изме- ненных	заме- ненных	НОВЫХ	аннули- рован- ных	листов (стра- ниц) в докум.	доку-	№ сопроводи- тельного документа и дата		
2		2-22	•	23-26		THAS. 77- 2014		to.	16.04.
								венный	

2 Зам. ТИАЯ.77-2014 16 04.2015 kB 22