-203-06/11/0

> УТВЕРЖДАЮ Начальник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

> > В. Н. Храменков

2004 г.

Государственная система обеспечения единства измерений.

Анализатор цепей Agilent E5061A фирмы «Agilent Technologies Inc.», США

Методика поверки

1 Общие сведения

- 1.1 Настоящая методика поверки распространяется на средство измерений анализатор цепей Agilent E5061A, заводской номер MY44100165 (далее анализатор), фирмы «Agilent Technologies Inc.», США, и устанавливает методы и средства первичной, периодической и внеочередной поверок, проводимых в соответствии с Правилами по метрологии Госстандарта ПР 50.2.006 "ГСИ. Порядок проведения поверки средств измерений".
- 1.2 Периодическая поверка анализатора должна проводиться с межповерочным интервалом 1 раз в год для прибора, находящегося в эксплуатации, и 1 раз в 3 года для прибора, находящегося в длительном хранении.

2 Операции поверки

- 2.1 Перед проведением поверки проводится внешний осмотр и операция подготовки анализатора к работе (см. п.7.1 и п.7.2).
- 2.2 Метрологические характеристики анализатора, подлежащего поверке, в том числе периодической, приведены в таблице 1.

Таблица 1.

Taosinga 1.	Номер	Обязательность поверки параметров		
Наименование поверяемых метрологи-	пункта	Первичная поверка		Периодиче-
ческих характеристик и параметров	методики	при покупке	после ре-	ская поверка
			монта	
1. Проверка погрешности измерения	8.3.1			
коэффициента передачи на фиксиро-		да	да	да
ванной частоте.				
2. Проверка погрешности измерения	8.3.2			
коэффициента передачи в диапазоне		да	да	да
частот.				
3. Проверка динамического диапазона.	8.3.3	да	да	да
4. Проверка диапазона частот.	8.3.1	да	да	да

3 Средства поверки

3.1 Рекомендуемые средства поверки приведены в таблице 2.

Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой погрешностью.

3.2 Все средства поверки должны быть исправны, применяемые при поверке средства измерений поверены и иметь свидетельства о поверке или оттиск поверительного клейма на приборе или технической документации.

Таблица 2

	1			лица 2
Наименование	Требуемые технические характеристики средст-		Рекомен-	При-
средств повер-	ва поверки		дуемое сред-	меча-
ки	пределы измерения	погрешность	ство поверки	ние
			(тип)	
1. Генератор	f = от 1,16 до 1,78 ГГц		Г4-78	
сигналов				
2. Синтезатор	f = от 10 до 1299,9 МГц		Ч6-71	
частоты				
2. Аттенюато-				
ры из состава				
ДК1-16 (атте-				
нюатор фикси-				
рованный 6 дБ				
2.260.118; ат-				
тенюатор фик-				
сированный 10				
дБ 2.260.118-				
02; аттенюатор				
фиксирован-				
ный 20 дБ				
2.260.118-03)				
3. Установка	А = от 0 до 140 дБ;	$\Delta = \pm 0,25$ дБ.	ДК1-16	
для измерения	f = от 0,01 до 17,85 ГГц.			
ослабления и				
фазового сдви-				
га образцовая.				

4 Требования к квалификации поверителей

Поверка должна осуществляться лицами, аттестованными в качестве поверителей в порядке, установленном в ПР 50.2.012-94.

5 Требования безопасности

При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80.

6 Условия поверки

Температура окружающего воздуха, ⁰ С	20 ± 5 .		
Относительная влажность воздуха, %	65 ± 15 .		
Атмосферное давление, кПа	$100 \pm 4 (750 \pm 30 \text{ MM pt.ct.})$		
Питание от сети переменного тока:	` ,		
напряжением, В	$220 \pm 4,4;$		
частотой, Гц	50 ± 0.5 .		

7 Подготовка к поверке

- 7.1 Поверитель должен изучить техническую документацию фирмы-изготовителя поверяемого анализатора и используемых средств поверки.
 - 7.2 Перед проведением операций поверки необходимо:
- произвести внешний осмотр анализатора, убедиться в отсутствии механических повреждений и неисправностей;
- проверить комплектность поверяемого анализатора для проведения поверки (наличие шнуров питания, измерительных шнуров и пр.);
- проверить комплектность рекомендованных (или аналогичных им) средств поверки, заземлить (если это необходимо) необходимые рабочие эталоны, средства измерений и включить питание заблаговременно перед очередной операцией поверки (в соответствии с временем установления рабочего режима, указанным в технической документации фирмы-изготовителя).

8 Проведение поверки

8.1 Внешний осмотр.

При проведении внешнего осмотра проверить:

- сохранность пломб;
- чистоту и исправность разъемов и гнезд;
- наличие предохранителей;
- отсутствие механических повреждений корпуса и ослабление элементов конструкции;
- сохранность механических органов управления и четкость фиксации их положения.

Прибор, имеющий дефекты (механические повреждения), бракуют и направляют в ремонт.

8.2 Опробование.

Опробование (проверка функционирования) анализатора проводится следующим образом.

- 8.2.1 Подключить анализатор к сети переменного тока с помощью прилагаемого сетевого шнура.
- 8.2.2 Включить анализатор при помощи переключателя на передней панели. Примерно через 60 секунд анализатор готов к работе.
- 8.2.3 Провести оперативную проверку анализатора согласно технической документации фирмы-изготовителя.
 - 8.3 Определение метрологических характеристик.
- 8.3.1 Методика проверки погрешности измерения коэффициента передачи на фиксированной частоте.
 - 8.3.1.1 Собрать схему согласно рис. 8.1.

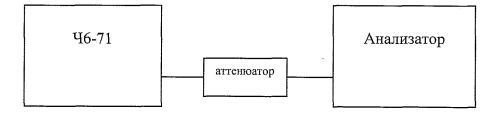


Рис. 8.1.

- 8.3.1.2 Измерения провести на частотах 300 к Γ ц; 1 М Γ ц; 100 М Γ ц; 500 М Γ ц; 1 Γ Γ ц; 1,2 Γ Γ ц.
- 8.3.1.3 Подготовить прибор к измерению коэффициента передачи согласно технической документации фирмы-изготовителя.
- 8.3.1.5 Измерения провести при номиналах ослабления: 0; 10; 16; 26; 36; 46; 50 дБм. Значение номиналов ослабления устанавливается набором последовательно соединенных аттенюаторов из состава установки ДК1-16. Далее проводится определение действительного значения ослабления аттенюаторов на выбранных частотах с помощью установки ДК1-16 в соответствии с инструкцией по эксплуатации.
 - 8.3.1.6 Вычислить погрешность измерения по формуле:

$$\Delta A = A - A_0,$$

где А- измеренное значение ослабления;

 A_0 - значение ослабления аттенюатора, измеренное с помощью установки ДК1-16. Определить максимальное значение погрешности измерения (по абсолютной величине).

- 8.3.1.5 Результаты испытаний считаются удовлетворительными, если максимальное значение погрешности измерения коэффициента передачи находится в пределах, указанных в технической документации фирмы-изготовителя.
- 8.3.2 Методика проверки погрешности измерения коэффициента передачи в диапазоне частот.
 - 8.3.2.1 Собрать схему согласно рис. 8.1.
- 8.3.2.2 Измерения провести в диапазонах частот: от 0,3 до 20 МГц; от 20 до 100 МГц; от 100 до 1200 МГц, от 1,2 до 1,5 ГГц. Для диапазона частот от 1,2 до 1,5 ГГц вместо Ч6-71 использовать генератор Γ 4-78.
- 8.3.2.3 Подготовить прибор к измерению коэффициента передачи согласно разделу "подготовка к работе" технической документации фирмы-изготовителя.
- 8.3.2.4 Установить уровень сигнала генератора 0 дБм и требуемую полосу частот. Произвести калибровку прибора по короткозамкнутой нагрузке и нагрузке холостого хода в диапазоне частот.
- 8.3.2.5 Провести измерения величины коэффициента передачи по маркеру анализатора цепей в точках на выбранных частотах и вычислить погрешность измерения аналогично п.8.3.1. Действительное значение ослабления аттенюаторов измерить с помощью установки ДК1-16 не менее чем для 5 значений частот в выбранном диапазоне.
- 8.3.2.6 Результаты испытаний считаются удовлетворительными, если максимальное значение погрешности измерения коэффициента передачи находится в пределах, указанных в технической документации фирмы-изготовителя.
 - 8.3.3 Методика проверки динамического диапазона.
 - 8.3.3.1 Собрать схему согласно рис. 8.1.
- 8.3.3.2 Измерения провести в диапазоне частот от 300 к Γ ц до 1,5 Γ Γ ц. Для диапазона частот от 1,2 до 1,5 Γ Γ ц вместо Ч6-71 использовать генератор Γ 4-78.
- 8.3.3.3 Проверку динамического диапазона провести согласно п.8.3.2 для значений коэффициента передачи 10 дБм и минус 70 дБм.
- 8.3.3.4 Результаты испытаний считаются удовлетворительными, если погрешность измерения ослабления в диапазоне от 10 дБм до минус 70 дБм находится в пределах, указанных в технической документации фирмы-изготовителя.
 - 8.3.4 Методика проверки диапазона частот.
 - 8.3.4.1 Собрать схему согласно рис. 8.1.
- 8.3.4.2 Подготовить прибор к измерению коэффициента передачи согласно технической документации фирмы-изготовителя.

- 8.3.4.3 Проверку частотного диапазона произвести в соответствии с п.8.3.1 на частотах 300 кГц и 1,5 ГГц. Для диапазона частот от 1,2 до 1,5 ГГц вместо Ч6-71 использовать генератор Г4-78.
- 8.3.4.4 Результаты испытаний считаются удовлетворительными, если погрешность измерения коэффициента передачи на частотах 300 кГц и 1,5 ГГц находится в пределах, указанных в технической документации фирмы-изготовителя.

9 Оформление результатов поверки

- 9.1 При положительных результатах поверки на анализатор выдается свидетельство установленной формы.
 - 9.2 На оборотной стороне свидетельства записывают результаты поверки.
- $9.3~\mathrm{B}$ случае отрицательных результатов поверки применение анализатора запрещается, и на него выдается извещение о непригодности его к применению с указанием причин.

Начальник отдела ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

Старший научный сотрудник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

И. Блинов

И. Рыжков