**УТВЕРЖДАЮ** НАЧАЛЬНИК ГЦИ СИ «ВОЕНТЕСТ» 32 ГНИЙИ МО РФ В. Храменков 2005 г. MODIO Hejdn + đ

861

Государственная система обеспечения единства измерений

Генератор ВЧ сигналов аналоговый с цифровым управлением E4433B

фирмы Agilent Technologies, США

МЕТОДИКА ПОВЕРКИ

#### введение

Настоящая методика распространяется на генератор ВЧ сигналов аналоговый с цифровым управлением Е4433В, заводской № МҮ43350231 производства фирмы "Agilent Technologies", США (далее по тексту – генератор) и устанавливает порядок и объем его первичной и периодической поверки.

Межповерочный интервал составляет 2 года.

Методика разработана в соответствии с требованиями РМГ 51-2002 и ПР 50.2.006-94.

# 1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

| Наименование операции                                                                                          | Номер                               | Проведение о                              | перации при                |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|----------------------------|
|                                                                                                                | пункта до-<br>кумента по<br>поверке | первичной<br>поверке или<br>после ремонта | Периодичес-<br>кой поверке |
| 1 Внешний осмотр                                                                                               | 5.1                                 | +                                         | +                          |
| 2 Опробование работоспособности генератора                                                                     | 5.2                                 | +                                         | +                          |
| 3 Определение метрологических характеристик прибора                                                            | 5.3                                 |                                           |                            |
| 3.1 Определение погрешности установки уровня выходного сигнала (частотная зависимость)                         | 5.3.1                               | +                                         | +                          |
| 3.2 Определение погрешности установки несу-<br>щей частоты                                                     | 5.3.2                               | +                                         | +                          |
| 3.3 Определение уровня второй и третьей гар-<br>моник относительно основного сигнала                           | 5.3.3                               | +                                         | -                          |
| 3.4 Определение уровня негармонических пара-<br>зитных составляющих относительно основного<br>сигнала          | 5.3.4                               | +                                         | -                          |
| 3.5 Определение погрешности девиации и КНИ частотной модуляции                                                 | 5.3.5                               | +                                         | -                          |
| 3.6 Определение погрешности девиации и КНИ фазовой модуляции                                                   | 5.3.6                               | +                                         | -                          |
| 3.7 Определение погрешности установки коэф-<br>фициента амплитудной модуляции и КНИ ам-<br>плитудной модуляции | 5.3.7                               | +                                         | +                          |
| 3.8 Определение ширины полосы IQ модуляции сигнала                                                             | 5.3.8                               | +                                         | +                          |

### 2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.

4.2 Перед проведением поверки необходимо выполнить следующие подготовительные работы:

выдержать приборы в условиях, указанных в п. 4.1 в течение не менее 1 ч; .

выполнить операции, оговоренные в руководстве по эксплуатации на поверяемый весовой терминал по его подготовке к поверке;

выполнить операции, оговоренные в технической документации на применяемые средства поверки по их подготовке к измерениям;

осуществить предварительный прогрев приборов для установления их рабочего режима.

### 5 ПРОВЕДЕНИЕ ПОВЕРКИ

#### 5.1. Внешний осмотр

При проведении внешнего осмотра проверяются:

- сохранность пломб;

- чистота и исправность разъемов и гнезд;

 отсутствие механических повреждений корпуса и ослабления крепления элементов конструкции (определяется на слух при наклонах прибора);

- сохранность органов управления, четкость фиксации их положения;

- комплектность прибора согласно РЭ.

Приборы, имеющие дефекты, бракуют.

#### 5.2. Опробование работоспособности генератора

Целью этой операции поверки является проверка правильности включения и функционирования прибора.

5.2.1. Включить генератор нажатием клавиши переключателя питания, должен засветиться зеленый светодиод. Выдержать прибор во включенном состоянии в течение 1 часа.

5.2.2. Выключить и снова включить питание. Зеленый светодиод должен снова засветиться и прибор начнет процесс самотестирования. Убедиться в том, что на дисплее не включился индикатор ERR и не появилось никаких сообщений об ошибках.

5.2.3. Проверить возможность получения максимальной нормируемой мощности на максимальной частоте генератора. Для этого:

Подготовить измеритель мощности МЗ-90 к работе в соответствии с его РЭ.

Подсоединить приемный преобразователь M3-90 к соединителю RF OUTPUT генератора.

Установить поверяемый прибор в исходное состояние (заводские настройки), для чего:

a. Нажать Utility > Power On/Preset и переключать Preset, пока не выделится Normal.

б. Нажать Preset.

Установить на генераторе максимальную нормируемую частоту:

а. Нажать Frequency.

б. Пользуясь цифровой клавиатурой, ввести максимальное нормируемое значение частоты (4 ГГц).

в. Закончить ввод нажатием клавиши Ghz.

Установить генератор на максимальное нормируемое значение выходной мощности:

а. Нажать Amplitude.

б. Пользуясь цифровой клавиатурой, ввести максимальное нормируемое значение мощности (+7 дБм).

в. Закончить ввод нажатием клавиши dBm.

Переключить клавишу лицевой панели RF On/Off, чтобы подвести ВЧ мощность к соединителю RF OUTPUT. При этом включится индикатор дисплея *RF ON*.

Убедиться в том, что измеритель мощности показывает максимальное нормируемое значение мощности с учетом пределов допускаемой погрешности.

Убедиться в том, что на дисплее не включились индикаторы ERR и UNLEVEL.

Результаты поверки по п.5.2 считаются положительными, если не включились все вышеуказанные индикаторы, а на дисплее не появилось сообщений об ошибках.

### 5.3. Определение метрологических характеристик

# 5.3.1. Определение погрешности установки уровня выходного сигнала (частотная зависимость)

5.3.1.1. Соединить поверочное оборудование по схеме рисунка 1.

5.3.1.2. Провести подготовку измерителя мощности к измерениям в соответствии с РЭ.

5.3.1.3. Установить поверяемый генератор в исходное состояние (заводские настройки) по п. 5.2.3.

5.3.1.4. Установить на генераторе частоту 277 кГц, для чего нажать клавишу лицевой панели Frequency, с помощью цифровой клавиатуры ввести 277 и закончить ввод нажатием программной клавиши kHz.



Рисунок 1. Схема определения погрешности установки уровня выходного сигнала.

5.3.1.5. Установить на генераторе уровень выходного сигнала +13 дБм, для чего нажать клавишу лицевой панели Amplitude, с помощью цифровой клавиатуры ввести 13 и закончить ввод нажатием программной клавиши dBm.

5.3.1.6. Нажать клавишу Mod On/Off. На дисплее появится индикатор *MOD OFF*. Нажать клавишу RF On/Off. На дисплее появится индикатор *RF ON*.

5.3.1.7. Занести показания измерителя мощности в четвертую колонку таблицы 3.

5.3.1.8. Повторить аналогичные операции по пп. 5.3.1.4...5.3.1.7 для всех несущих частот и уровней выходного сигнала, указанных в таблице 3.

Примечание. Для частот ниже 20 МГц вместо измерителя мощности М3-90 использовать вольтметр переменного тока В3-63.

| Гаолица 3       |                  |               |                  |                |
|-----------------|------------------|---------------|------------------|----------------|
| Установленное   | Установленное    | Нижний предел | Измеренный       | Верхний предел |
| значение часто- | значение уровня, | уровня, дБм   | уровень сигнала, | уровня, дБм    |
| ты, МГц         | дБм              |               | дБм              |                |
| 0,277           | +13              | 12,5          |                  | 13,5           |
|                 | 0                | -0,5          |                  | 0,5            |
|                 | -15              | -15,5         |                  | -14,5          |
| 2,516           | +13              | 12,5          |                  | 13,5           |

|        | 0   | -0,5  | 0,5   |
|--------|-----|-------|-------|
|        | -15 | -15,5 | -14,5 |
| 270,1  | +13 | 12,5  | 13,5  |
|        | 0   | -0,5  | 0,5   |
|        | -15 | -15,5 | -14,5 |
| 510,1  | +13 | 12,5  | 13,5  |
|        | 0   | -0,5  | 0,5   |
|        | -15 | -15,5 | -14,5 |
| 999,1  | +13 | 12,5  | 13,5  |
|        | 0   | -0,5  | 0,5   |
|        | -15 | -15,5 | -14,5 |
| 1350,1 | +10 | 9,5   | 10,5  |
|        | 0   | -0,5  | 0,5   |
|        | -15 | -15,5 | -14,5 |
| 1950,1 | +10 | 9,5   | 10,5  |
|        | 0   | -0,5  | 0,5   |
|        | -15 | -15,5 | -14,5 |
| 2310,1 | +10 | 9,1   | 10,9  |
|        | 0   | -0,9  | 0,9   |
|        | -15 | -15,9 | 14,1  |
| 2985,1 | +10 | 9,1   | 10,9  |
|        | 0   | -0,9  | 0,9   |
|        | -15 | -15,9 | -14,1 |
| 3225,1 | +7  | 6,1   | 7,9   |
|        | 0   | -0,9  | 0,9   |
|        | -15 | -15,9 | -14,1 |
| 4000   | +7  | 6,1   | 7,9   |
|        | 0   | -0,9  | 0,9   |
|        | -15 | -15,9 | -14,1 |

Результаты поверки считать положительными, если измеренные значения укладываются в пределы, приведенные в таблице.

# 5.3.2. Определение погрешности установки несущей частоты

5.3.2.1. Подсоединить к выходу поверяемого прибора частотомер (рис. 2).

5.3.2.2. Установить поверяемый генератор в исходное состояние (заводские настройки) по п. 5.2.3.

5.3.2.3. Установить на генераторе частоту 250 кГц, для чего нажать клавишу лицевой панели Frequency, с помощью цифровой клавиатуры ввести 250 и закончить ввод нажатием программной клавиши кНz.

5.3.2.4. Установить на генераторе уровень выходного сигнала 0 дБм, для чего нажать клавишу лицевой панели Amplitude, с помощью цифровой клавиатуры ввести 0 и закончить ввод нажатием программной клавиши dBm.

5.3.2.5. Нажать клавишу Mod On/Off. На дисплее появится индикатор *MOD OFF*. Нажать клавишу RF On/Off. На дисплее появится индикатор *RF ON*.

5.3.2.6. Занести показания частотомера ЧЗ-66 в третью колонку таблицы 4.



Рисунок 2. Определение погрешности установки несущей частоты

5.3.2.7. Устанавливать значения несущих частот по п. 5.3.3.3 в соответствии с таблицей 4 и занести измеренные значения в таблицу.

| Таолица 4            |                    |                     |                     |
|----------------------|--------------------|---------------------|---------------------|
| Установленное значе- | Минимальное значе- | Измеренное значение | Максимальное значе- |
| ние несущей частоты, | ние частоты, Гц    | частоты, Гц         | ние частоты, Гц     |
| МГц                  |                    |                     |                     |
| 0,25                 | 249 999            |                     | 250001              |
| 1                    | 999 999            |                     | 1000001             |
| 10                   | 9 999 990          |                     | 10000010            |
| 50                   | 49 999 950         |                     | 50000050            |
| 100                  | 99 999 900         |                     | 100000100           |
| 375                  | 374 999 625        |                     | 375000375           |
| 750                  | 749 999 250        |                     | 750000750           |
| 1000                 | 998999000          |                     | 999001000           |
| 1100                 | 1099 9989 000      |                     | 1100001100          |
| 1500                 | 1 499 998 500      |                     | 1500001500          |
| 2000                 | 1 999 998 000      |                     | 2000002000          |
| 3000                 | 2 999 997 000      |                     | 3000003000          |
| 4000                 | 3 999 996 000      |                     | 4000004000          |

Результаты поверки следует считать положительными, если измеренные значения несущих частот лежат в пределах, приведенных в таблице 4.

# 5.3.3. Определение уровней второй и третьей гармоник относительно основного сиг-

5.3.3.1. Соединить поверочное оборудование по схеме рисунка 3.

нала

5.3.3.2. Провести подготовку спектроанализатора к измерениям в соответствии с РЭ.

5.3.3.3. Установить поверяемый генератор в исходное состояние (заводские настройки) по п. 5.2.3.

5.3.3.4. Установить на генераторе частоту 250 кГц, для чего нажать клавишу лицевой панели Frequency, с помощью цифровой клавиатуры ввести 250 и закончить ввод нажатием программной клавиши кНz.

5.3.3.5. Установить на генераторе уровень выходного сигнала 0 дБм, для чего нажать клавишу лицевой панели Amplitude, с помощью цифровой клавиатуры ввести 0 и закончить ввод нажатием программной клавиши dBm.

5.3.3.6. На спектроанализаторе выполнить следующие установки:

| - центральная частота | 250 кГц |
|-----------------------|---------|
| - полоса обзора       | 1 МГц   |
| - опорный уровень     | 0 дБм   |
| - полоса разрешения   | 1 кГц   |

5.3.3.7. Нажать клавишу Mod On/Off. На дисплее появится индикатор *MOD OFF*. Нажать клавишу RF On/Off. На дисплее появится индикатор *RF ON*.

5.3.3.8. На спектроанализаторе установить линию спектра сигнала несущей в центр экрана дисплея, а вершину пика подвести к линии опорного уровня.

5.3.3.9. Установить режим дельта-маркера.

5.3.3.10. Измерить уровни второй и третьей гармоник для частоты несущей 250 кГц и для каждой из остальных частот, указанных в таблице 5, каждый раз выполняя соответствующие установки по пп. 5.3.3.4...5.3.3.6. Результаты измерений заносить в таблицу 5.

5.3.3.11. Установить на генераторе уровень -24 дБм и повторить операции по п. 5.3.3.10.

5.3.3.12. Установить на генераторе уровень 7 дБм и повторить операции по п. 5.3.3.10.



Рисунок 3. Определение уровня гармонических составляющих

| Таблица 5   |                |                |            |                |            |
|-------------|----------------|----------------|------------|----------------|------------|
| Уровни вы-  | Несущая часто- | Максимальный   | Результат  | Максимальный   | Результат  |
| ходного     | та, МГц        | нормируемый    | измерения  | нормируемый    | измерения  |
| сигнала по- |                | уровень второй | второй     | уровень треть- | третьей    |
| веряемого   |                | гармоники,     | гармоники, | ей гармоники,  | гармоники, |
| генератора, |                | дБм            | дБ         | дБм            | дБ         |
| дБм         |                |                |            |                |            |
|             | 0,250          | -30            |            | -30            |            |
|             | 1              | -30            |            | -30            |            |
|             | 10             | -30            |            | -30            |            |
|             | 50             | -30            |            | -30            |            |
|             | 100            | -30            |            | -30            |            |
| -24; 0; 10  | 375            | -30            |            | -30            |            |
|             | 750            | -30            |            | -30            |            |
|             | 1010           | -30            |            | -30            |            |
|             | 1500           | -30            |            | -30            |            |
|             | 2000           | -30            |            | -30            |            |
|             | 3000           | -30            |            | -30            |            |
|             | 4000           | -30            |            | -30            |            |

Результаты поверки считать положительными, если измеренные значения уровней гармоник не превышают максимальных значений, приведенных в таблице.

# 5.3.4. Определение уровня негармонических паразитных составляющих относительно основного сигнала

5.3.4.1. Соединить поверочное оборудование по схеме рисунка 3..

5.3.4.2. Провести подготовку спектроанализатора к измерениям в соответствии с РЭ.

5.3.4.3. Установить поверяемый генератор в исходное состояние (заводские настройки) по п. 5.2.3.

5.3.4.4. Установить на генераторе частоту 100 МГц, для чего нажать клавишу лицевой панели Frequency, с помощью цифровой клавиатуры ввести 100 и закончить ввод нажатием программной клавиши MHz.

5.3.4.5. Установить на генераторе уровень выходного сигнала 7 дБм, для чего нажать клавишу лицевой панели Amplitude, с помощью цифровой клавиатуры ввести 7 и закончить ввод нажатием программной клавиши dBm.

5.3.4.6. На спектроанализаторе установить центральную частоту 100 МГц и опорный уровень 7 дБм.

5.3.4.7. Нажать клавишу Mod On/Off. На дисплее появится индикатор *MOD OFF*. Нажать клавишу RF On/Off. На дисплее появится индикатор *RF ON*.

5.3.4.8. На спектроанализаторе установить линию спектра сигнала несущей в центр экрана дисплея, а вершину пика подвести к линии опорного уровня.

5.3.4.9. Установить режим дельта-маркера.

5.3.4.10. Измерить с помощью спектроанализатора уровень мощности паразитных сигналов относительно основного для отстроек от несущей >3 кГц и >10 кГц, результат занести в таблицу 6. 5.3.4.11. Повторить измерения для остальных несущих частот таблицы 7.

|                  | Ируаранный       | Прадалицораца    | Ириоронний       | Прадалинована    |
|------------------|------------------|------------------|------------------|------------------|
| песущая частота, | измеренный       | Предельное зна-  | измеренный       | Предельное зна-  |
| МГц              | уровень паразит- | чение уровня па- | уровень паразит- | чение уровня па- |
|                  | ного сигнала для | разитного сигна- | ного сигнала для | разитного сигна- |
|                  | отстройки>3 кГц, | ла, дБс          | отстройки        | ла, дБс          |
|                  | дБс              |                  | >10кГц, дБс      |                  |
| 100              |                  | -65              |                  | -75              |
| 400              |                  | -65              |                  | -75              |
| 750              |                  | -65              |                  | -75              |
| 1500             |                  | -59              |                  | -69              |
| 2900             |                  | -53              |                  | -63              |

Таблица 6

Результаты поверки считать положительными, если измеренные значения уровней паразитных негармонических сигналов не превышают предельных значений, приведенных в третьей и пятой колонках таблицы.

# 5.3.5. Определение погрешности девиации и КНИ частотной модуляции

5.3.5.1. Измерения проводить по схеме рисунка 4.

5.3.5.2. Установить поверяемый генератор в исходное состояние (заводские настройки) по п. 5.2.3. 5.3.5.3. Нажать на поверяемом генераторе FM/ $\Phi$ M > FM Off On (клавишу лицевой панели и программную клавишу появившегося меню). На дисплее появится индикатор *FM*.

5.3.5.4. Нажать программную клавишу FM Rate. С помощью цифровой клавиатуры ввести 1 и завершить ввод нажатием программной клавиши kHz.

5.3.5.5. Нажать программную клавишу FM Dev. С помощью цифровой клавиатуры ввести 100 и завершить ввод нажатием программной клавиши kHz.

5.3.5.6. Установить на генераторе уровень выходного сигнала 7 дБм, для чего нажать клавишу лицевой панели Amplitude, с помощью цифровой клавиатуры ввести 7 и закончить ввод нажатием программной клавиши dBm.

5.3.5.7. Убедиться в том, что на дисплее отображается индикатор *MOD ON*. Если нет, нажать Mod On/Off.

5.3.5.8. Нажать клавишу RF On/Off. На дисплее появится индикатор RF ON.

5.3.5.9. На измерителе модуляции выполнить все необходимые процедуры для подготовки его к измерениям в режиме ЧМ в соответствии с РЭ. Включить фильтр верхних частот 300 Гц и фильтр нижних частот 3 кГц.



Поверяемый прибор

Рисунок 4. Определение погрешности девиации и КНИ частотной модуляции.

5.3.5.10. Устанавливать на поверяемом генераторе несущие частоты, указанные в таблице 7, аналогично п. 5.3.4.4.

5.3.5.11. Измерить значения девиации и КНИ на несущих частотах, указанных в таблице 7. Повторить измерения для значения девиации 200 кГц (устанавливается по п. 5.3.5.5).

Результаты поверки положительные, если измеренные значения укладываются в нормируемые пределы, указанные в таблице 7.

Таблица 7

| Несущая  | Установ-    | Нижний      | Измерен-   | Верхний     | Измерен-   | Нормиро-    |
|----------|-------------|-------------|------------|-------------|------------|-------------|
| частота, | ленное зна- | предел зна- | ное значе- | предел зна- | ное значе- | ванное зна- |
| МГц      | чение де-   | чения де-   | ние девиа- | чения де-   | ние КНИ,   | чение КНИ,  |
|          | виации,     | виации,     | ции, кГц   | виации,     | %          | %, менее    |
|          | кГц         | кГц         |            | кГц         |            |             |
| 500,001  | 100         | 96,48       |            | 103,52      |            | 1           |
| 750      | 100         | 96,48       |            | 103,52      |            | 1           |
| 1000     | 100         | 96,48       |            | 103,52      |            | 1           |
| 2000     | 100         | 96,48       |            | 103,52      |            | 1           |
| 500,001  | 200         | 192,98      |            | 207,02      |            | 1           |
| 750      | 200         | 192,98      |            | 207,02      |            | 1           |
| 1000     | 200         | 192,98      |            | 207,02      |            | 1           |
| 2000     | 200         | 192,98      |            | 207,02      |            | 1           |

### 5.3.6. Определение погрешности девиации и КНИ фазовой модуляции

5.3.6.1. Измерения проводить по схеме рисунка 4.

5.3.6.2. Установить поверяемый генератор в исходное состояние (заводские настройки) по п. 5.2.3. 5.3.6.3. Нажать на поверяемом генераторе FM/ $\Phi$ M >  $\Phi$ M Off On (клавишу лицевой панели и программную клавишу появившегося меню). На дисплее появится индикатор  $\Phi$ M.

5.3.6.4. Нажать программную клавишу ФМ Rate. С помощью цифровой клавиатуры ввести 1 и завершить ввод нажатием программной клавиши kHz.

5.3.6.5. Нажать программную клавишу ФМ Dev. С помощью цифровой клавиатуры ввести 10 и завершить ввод нажатием программной клавиши rad.

5.3.6.6. Установить на генераторе уровень выходного сигнала 7 дБм, для чего нажать клавишу лицевой панели Amplitude, с помощью цифровой клавиатуры ввести 7 и закончить ввод нажатием программной клавиши dBm.

5.3.6.7. Убедиться в том, что на дисплее отображается индикатор *MOD ON*. Если нет, нажать Mod On/Off.

5.3.6.8. Нажать клавишу RF On/Off. На дисплее появится индикатор RF ON.

5.3.6.9. На измерителе модуляции выполнить все необходимые процедуры для подготовки его к измерениям в режиме ФМ в соответствии с РЭ.

5.3.6.10. Устанавливать на поверяемом генераторе несущие частоты, указанные в таблице 8, аналогично п. 5.3.4.4.

5.3.6.11. Измерить значения девиации и КНИ на несущих частотах, указанных в таблице 8. Повторить измерения для значения девиации 20 rad (устанавливается по п. 5.3.6.5).

Результаты поверки положительные, если измеренные значения укладываются в нормируемые пределы, указанные в таблице 8.

| Несущая  | Установ-    | Нижний      | Измерен-    | Верхний     | Измерен-   | Нормиро-    |
|----------|-------------|-------------|-------------|-------------|------------|-------------|
| частота, | ленное зна- | предел зна- | ное значе-  | предел зна- | ное значе- | ванное зна- |
| МΓц      | чение де-   | чения де-   | ние девиа-  | чения де-   | ние КНИ,   | чение КНИ,  |
|          | виации, ра- | виации, ра- | ции, радиан | виации, ра- | %          | %, менее    |
|          | диан        | диан        |             | диан        |            |             |
| 500,001  | 10          | 9,49        |             | 10,51       |            | 1           |
| 750      | 10          | 9,49        |             | 10,51       |            | 1           |
| 1000     | 10          | 9,49        |             | 10,51       |            | 1           |
| 200      | 10          | 9,49        |             | 10,51       |            | 1           |
| 500,001  | 20          | 18,99       |             | 21,01       |            | 1           |
| 750      | 20          | 18,99       |             | 21,01       |            | 1           |
| 1000     | 20          | 18,99       |             | 21,01       |            | 1           |
| 2000     | 20          | 18,99       |             | 21,01       |            | 1           |

Таблица 8

# 5.3.7. Определение погрешности установки коэффициента амплитудной модуляции и КНИ амплитудной модуляции

5.3.7.1. Выполнить соединения по схеме рисунка 4.

5.3.7.2. Установить поверяемый генератор в исходное состояние (заводские настройки) по п. 5.2.3.

5.3.7.3. Нажать на поверяемом генераторе AM > AM Off On (клавишу лицевой панели и про-

граммную клавишу появившегося меню). На дисплее появится индикатор АМ.

5.3.7.4. Нажать программную клавишу AM Rate. С помощью цифровой клавиатуры ввести 1 и завершить ввод нажатием программной клавиши kHz.

5.3.7.5. Нажать программную клавишу AM Depth. С помощью цифровой клавиатуры ввести 30 и завершить ввод нажатием программной клавиши %.

5.3.7.6. Установить на генераторе уровень выходного сигнала 7 дБм, для чего нажать клавишу лицевой панели Amplitude, с помощью цифровой клавиатуры ввести 7 и закончить ввод нажатием программной клавиши dBm.

5.3.7.7. Убедиться в том, что на дисплее отображается индикатор *MOD ON*. Если нет, нажать Mod On/Off.

5.3.7.8. Нажать клавишу RF On/Off. На дисплее появится индикатор *RF ON*.

5.3.7.9. На измерителе модуляции выполнить все необходимые процедуры для подготовки его к измерениям в режиме AM в соответствии с РЭ. Включить фильтр верхних частот 300 Гц и фильтр нижних частот 3 кГц.

5.3.7.10. Устанавливать на поверяемом генераторе несущие частоты, указанные в таблице 9, аналогично п. 7.3.4.4.

5.3.7.11. Измерить значения коэффициента модуляции и КНИ на несущих частотах, указанных в таблице 10. Повторить измерения для значения коэффициента модуляции 90 % (устанавливается по п. 5.3.7.5).

Результаты поверки положительные, если измеренные значения укладываются в нормируемые пределы, указанные в таблице 9.

| Таблица 9 |                    |            |            |             |            |             |
|-----------|--------------------|------------|------------|-------------|------------|-------------|
| Несущая   | Установ-           | Минималь-  | Измерен-   | Максима-    | Измерен-   | Нормиро-    |
| частота,  | ленный к <b>о-</b> | ное значе- | ное значе- | льное зна-  | ное значе- | ванное зна- |
| МΓц       | эффициент          | ние коэф.  | ние коэф.  | чение коэф. | ние КНИ    | чение КНИ,  |
|           | AM, %              | AM, %      | AM, %      | AM, %       | AM, %      | %, не более |
| 5         | 90                 | 83,6       |            | 96,4        |            | 4           |
|           | 30                 | 27,2       |            | 32,8        |            | 1,5         |
| 10        | 90                 | 83,6       |            | 96,4        |            | 4           |
|           | 30                 | 27,2       |            | 32,8        |            | 1,5         |
| 50        | 90                 | 83,6       |            | 96,4        |            | 4           |
|           | 3()                | 27,2       |            | 32,8        |            | 1,5         |
| 100       | 90                 | 83,6       |            | 96,4        |            | 4           |
|           | 70                 | 64,8       |            | 75,2        |            | 4           |
|           | 60                 | 55,4       |            | 64,6        |            | 4           |
|           | 50                 | 46         |            | 54          |            | 4           |
|           | 4.0                | 36,6       |            | 43,4        |            | 4           |
|           | 30                 | 27,2       |            | 32,8        |            | 1,5         |
|           | 20                 | 17,8       |            | 22,2        |            | 1,5         |
|           | { ( )              | 8,4        |            | 11,6        |            | 1,5         |
|           | 5                  | 3,7        |            | 6,3         |            | 1,5         |
| 500       | 90                 | 83,6       |            | 96,4        |            | 4           |
|           | 30                 | 27,2       |            | 32,8        |            | 1,5         |
| 1000      | 90                 | 83,6       |            | 96,4        |            | 4           |
|           | 30                 | 27,2       |            | 32,8        |            | 1,5         |

Таблица 9

# 5.3.8. Определение ширины полосы IQ модуляции сигнала

5.3.8.1. Операнни поверки по определению ширины полосы IQ модуляции (на уровне 1 дБ) выполняются по ехеме соединений рисунка 5. Генератор сигналов Г4-176 служит для того, чтобы по очереди стиму пировать I и Q входы поверяемого прибора (вход инфазного сигнала и сигнала в квадратурной фазе). Сигнал IQ модулятора исследуется на экране спектроанализатора.



Рисунок 5. Определение ширины полосы IQ модуляции. Signal generator – генератор Г4-176, UUT – поверяемый прибор, Spectrum analyzer – анализатор спектра

5.3.8.2. Провести подготовку спектроанализатора к измерениям в соответствии с РЭ.

5.3.8.3. Установить поверяемый генератор в исходное состояние (заводские настройки) по п. 5.2.3. 5.3.8.4. Установить на поверяемом генераторе частоту 375 МГц, для чего нажать клавишу лицевой панели Frequency, с помощью цифровой клавиатуры ввести 375 и закончить ввод нажатием программной клавиши MHz.

5.3.8.5. Установить на поверяемом генераторе уровень выходного сигнала 0 дБм, для чего нажать клавишу лицевой панели Amplitude, с помощью цифровой клавиатуры ввести 0 и закончить ввод нажатием программной клавиши dBm.

5.3.8.6. На спектроанализаторе установить центральную частоту 375 МГц, опорный уровень 0 дБм, полосу обзора 11 МГц.

5.3.8.7. Нажать клавишу Mod On/Off. На дисплее появится индикатор *MOD OFF*. Нажать клавишу RF On/Off. На дисплее появится индикатор *RF ON*.

5.3.8.8. На спектроанализаторе установить линию спектра сигнала несущей в центр экрана дисплея, а вершину пика подвести к линии опорного уровня.

5.3.8.9. Установить режим дельта-маркера.

5.3.8.10. Провести калибровку IQ модулятора, для чего на поверяемом приборе:

Нажать I/Q > I/Q Calibration. Убедиться в том, что высвечивается слово Full на программной клавише Calibration Type User Full. Если нет, нажать Calibration Type User Full.

Нажать Execute Cal, чтобы начать I/Q калибровку во всем частотном диапазоне поверяемого генератора. Пока калибровка не завершена, на дисплее будет высвечиваться сообщение I/Q Calibration in Progress.

Удостовериться, что калибровка прошла успешно (нет сообщений об ошибках).

5.3.8.11. Нажать на поверяемом приборе программную клавишу Ext I/Q.

5.3.8.12. Установить на генераторе Г4-176 частоту 500 кГц и уровень выходного сигнала 500 мВ.

5.3.8.13. Используя ручку регулировки, перестраивать несущую частоту генератора сигналов Г4-176 вплоть до 10 МГц ступенями 10 кГц и наблюдать уровень боковых полос на спектроанализаторе.

5.3.8.14. Используя возможности маркеров спектроанализатора, убедиться в том, что уровень верхней и нижней боковых полос меньше, чем ±1 дБ по отношению к уровню смещения на частоте ±500 кГц. Результат измерения уровней занести в таблицу 10.

5.3.8.15. Повторить операции по п.п. 5.3.8.4...5.3.8.14 для остальных несущих частот таблицы 10. 5.3.8.16. Полгоединить выход генератора Г4-176 ко входу ЕХТ Q поверяемого прибора и повторить операции по п.п. 5.3.8.4...5.3.8.15.

Таблица 10

| гиолици го       |                     |                     |                      |
|------------------|---------------------|---------------------|----------------------|
| Несущая частота, | Ізмеренное значение | Допускаемые пределы | Измеренное значение  |
| МГц              | уровня нижней боко- | уровней полос, дБ   | уровня верхней боко- |
|                  | вой полосы, дБ      |                     | вой полосы, дБ       |
| 375              |                     | -1                  |                      |
| 750              |                     | -1                  |                      |
| 1500             |                     | -1                  |                      |
| 2000             |                     | -1                  |                      |
| 3000             |                     | -1                  |                      |
| 4000             |                     | -1                  |                      |

Результаты поверки считать положительными, если измеренные значения не выходят за пределы, указанные в таблице.

### 6 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

6.1 При положительных результатах поверки на генератор ВЧ сигналов аналоговый с цифровым управлением Е4433В (техническую документацию) наносится оттиск поверительного клейма или выдается свидетельство установленной формы.

6.2 Значения характеристик, определенные в процессе поверки при необходимости заносятся в документацию.

6.3 В случае отрицательных результатов поверки применение генератора ВЧ сигналов аналогового с цифровым управлением Е4433В запрещается, на него выдается извещение о непригодности к применению с указанием причин.

Заместитель начальника отдела ГЦИ СИ «ВОЕНТЕСТ» 32 ГНИИИ МО РФ

Младший научный сотрудник ГЦИ СИ «ВОЕНТЕСТ» 32 ГНИИИ МО РФ

flef.

И.М. Малай

А.В. Клеопин