УТВЕРЖДАЮ

согласовано

Зам.директора ГМЦГИ ФГУП

«ВНИИФТРИ»

Начальник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

В.Н. Храменков

С.В. Сильвестров

10 _____ 2005 г.

«28» 10 2005 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Комплекс для поверки (градуировки) гидрофонов ВМФ-РЭ1/5 00.00.00

Методика поверки

ВМФ-РЭ1/5 00.00.00 Д

Москва 2005

1. Общие положения

Настоящая методика распространяется на комплекс для поверки (градуировки) гидрофонов ВМФ-РЭ1/5 00.00.00 (в дальнейшем - комплекс ВМФ-РЭ1/5), предназначенный для поверки (градуировки) рабочих измерительных гидрофонов и гидроакустических головок в диапазоне частот от 0,1 Гц до 200 кГц и устанавливает методы и средства проведения первичной и периодической поверок.

Настоящая методика соответствует требованиям МИ 2040-89.

Межповерочный интервал не должен превышать 12 месяцев.

Комплекс ВМФ–РЭ1/5 состоит из двух измерительных установок:

установки ВМФ-РЭ1/5С, предназначенной для поверки (градуировки) рабочих измерительных гидрофонов и гидроакустических головок в диапазоне частот от 0,1 Гц до 3,15 кГц:

установки ВМФ-РЭ1/5В, предназначенной для поверки (градуировки) рабочих измерительных гидрофонов и гидроакустических головок в диапазоне частот от 3,15 кГц до 200 кГц.

2. Проведение поверки комплекса ВМФ-РЭ1/5

Поверка комплекса заключается в проведении независимых поверок установок ВМФ-*РЭ1/5С и ВМФ-РЭ1/5В*.

Поверка установки ВМФ-РЭ1/5С производится в соответствии с методикой поверки установки ВМФ-РЭ1/5С 00.00.00 Д2.

Поверка установки ВМФ-РЭ1/5В производится в соответствии с методикой поверки установки ВМФ-РЭ1/5В 00.00.00 Д1.

Перед проведением поверки необходимо предварительно ознакомиться с Формуляром ВМФ-РЭ1/5 00.00.00 ФО, Руководством по эксплуатации ВМФ-РЭ1/5С 00.00.00 РЭ, Руководством по эксплуатации ВМФ-РЭ1/5В 00.00.00 РЭ.

3. Оформление результатов поверки комплекса ВМФ-РЭ1/5

При положительных результатах поверок установок $BM\Phi - P \Im 1/5C$ и $BM\Phi - P \Im 1/5B$ выдается свидетельство о поверке комплекса ВМФ-РЭ1/5 в качестве рабочего эталона 2-го разряда по МИ 1620-92, форма которого приведена в приложении 2 МИ 2040-89.

При отрицательных результатах по любому из пунктов методики поверки дальнейшее проведение поверки прекращается, комплекс бракуется, к дальнейшему применению не допускается и на него выдается извещение о непригодности в соответствии с требованиями ПР 50.2.006-94 с указанием причин.

Начальник отдела 32 ГНИИИ МО РФ Начальник лаборатории ГМЦГИ ФГУП «ВНИИФТРИ» Главный конструктор разработки комплекса ВМФ-РЭ1/5

В.В. Супрунюк

С.М. Лихачев

А.Е. Исаев

Установка ВМФ-РЭ1/5С

МЕТОДИКА ПОВЕРКИ

ВМФ-РЭ1/5 00.00.00 Д2

Настоящая методика поверки распространяется на установку ВМФ–РЭ1/5С, предназначенную для автоматического проведения гидроакустических измерений: АЧХ чувствительности рабочих измерительных гидрофонов методом сличения в диапазоне частот (0,1 – 3150,0) Гц и устанавливает методы и средства проведения первичной и периодической поверок.

Настоящая методика поверки соответствует требованиям МИ 2040-89.

Перед проведением поверки необходимо предварительно ознакомиться с Руководством по эксплуатации на установку для градуировки гидрофонов ВМФ-РЭ1/5С 00.00.00 РЭ.

2 Операции поверки.

2.1 При проведении поверки установки ВМФ-РЭ1/5С должны выполняться операции, приведенные в таблице 1.

Таблица 1

Наименование	Номер пункта	Проведение операции при		
операции порерки	методики повер-	первичной	периодической	
операции поверки	КИ	поверке	поверке	
<u>1 Внешний осмотр</u>	7.1	да	да	
2 Опробование	7.2			
2.1 Опробование излучающего тракта	7.2.1	да	да	
2.2 Опробование приемного тракта	7.2.2	да	да	
2.3 Опробование тракта ЦАП - УВ-13	7.2.3	да	да	
3 Проверка технических характеристик	7.3		с. 	
3.1 Проверка частоты ЦАП	7.3.1	да	да	
3.2 Проверка выходного напряжения УМЗ	7.3.2	да	нет	
3.3 Проверка возможности поверки гидрофо-	7.3.3	да	нет	
нов на частоте 0,1 Гц				
4 Определение метрологических характери-	7.4			
стик				
4.1 Определение нелинейности амплитудной	7.4.1	да	нет	
характеристики приемного тракта				
4.2 Определение соотношения сигнал/шум.	7.4.2	да	нет	
4.3 Определение диапазона измерения чувст-	7.4.3	да	нет	
вительности поверяемых гидрофонов		·		
4.4 Определение коэффициентов усиления	7.4.4	да	да	
4.5 Определение неравномерности звукового	7.4.5	ла	нет	
поля в полости камеры				
4.6 Определение чувствительности ИП1.	7.4.6	да	да	
4.7 Определение СКО результата измерения	7.4.7	да	нет	
при поверке типовых гидрофонов.		57.750		
4.8 Определение систематической погрешно-				
сти установки ВМФ-РЭ1/5С по результатам	718	70		
градуировки рабочего эталона (гидрофона)	/.4.0	да	да	
1-го разряда				

3 Средства поверки.

3.1 При проведении поверки должны быть применены средства измерений и вспомогательные устройства, приведенные в таблице 2. Таблица 2

№ пункта методики поверки	Наименование и тип основного или вспомогательного средства поверки, метрологические и основные технические характеристики средства поверки					
7.4.1	Аттенюатор образцовый ступенчатый АО-4, диапазон ослабления (0 – 110) дБ,					
	θ ≤ 0,05 дБ					
7.3.1	Частотомер электронно-счетный Ч3-63, $\Delta \leq 0,01$ %					
7.3.2	Измеритель нелинейных искажений C6-11, $\Delta \le 1,0$ %					
7.3.2	Вольтметр универсальный цифровой В7-34, ∆ ≤ 1,5 %					
7.4.7	Рабочий эталон 1-го разряда ГИ-33, диапазон частот 0,1 Гц – 3,15 кГц, θ ≤ 0,5 дБ.					
т.	Вспомогательное оборудование					
7.3.3, 7.4.4	Эквиваленты гидрофона, $\theta \le 5$ %:					
	ЭГГ 36 пФ; ЭГГ 360 пФ; ЭГ-5 15 нФ					
7.4.2, 7.4.5	Измерительный гидрофон, диапазон частот 0,1 Гц – 3,15 кГц, θ ≤ 3 дБ					
7.4.6	Цилиндр калибровочный					
7.4.5	Линейка, 0-150 мм, θ ≤ 0,5 мм					

3.2 Все средства поверки должны иметь действующий документ о поверке.

3.3 Допускается применение других средств измерений, удовлетворяющих требованиям настоящей методики поверки и обеспечивающих измерение соответствующих параметров с требуемой погрешностью.

Вспомогательные материалы, необходимые для проведения поверки, и нормы их расхода приведены в таблице 3.

Таблица 3

Наименование материала	Нормы расхода, кг
Ветошь обтирочная ОСТ-63-46-84	3,0
Спирт этиловый ГОСТ 18300-72	3,0
Мыло хозяйственное СТ 13-368-85	0,5
Вата хлопчатобумажная ГОСТ 5679-85	0,3

4 Требования безопасности и требования к квалификации поверителей

4.1 При выполнении операций поверки должны быть соблюдены все требования техники безопасности, регламентированные ГОСТ 12.1.019-79, ГОСТ 12.1.038-82, ГОСТ 12.3.019-80, действующими «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также всеми действующими местными инструкциями по технике безопасности.

4.2 К выполнению операций поверки и обработке результатов наблюдений могут быть допущены только лица, аттестованные в качестве поверителя в установленном порядке.

4.3 Персонал должен иметь допуск к работам в электроустановках до 1000 В.

5 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

- температура воды и воздуха (20 ± 5) °С;

- атмосферное давление (100 ± 4) кПа (750 ± 30) мм рт ст;

- относительная влажность воздуха до 80 % при температуре окружающего воздуха (20 ± 5) °С;

- напряжение питающей сети (220 ± 22) с частотой (50 ± 1) Гц.

6 Подготовка к поверке

6.1 На поверку представляют установку ВМФ-РЭ1/5С, полностью укомплектованную в соответствии с ЭД на нее (ВМФ-РЭ1/5 00.00.00 ФО и ВМФ-РЭ1/5С 00.00.00 РЭ) за исключением ЗИП.

При периодической поверке представляют дополнительно свидетельство и протокол о предыдущей поверке.

6.2 Во время подготовки установки к поверке поверитель знакомится с нормативной документацией на установку и готовит все необходимые материалы и средства измерений к проведению поверки.

6.3 Поверитель собирает установку и подготавливает ее к включению в сеть в соответствии с ее ЭД (ВМФ-РЭ1/5С 00.00.00 РЭ).

7 Проведение поверки.

7.1 Внешний осмотр

7.1.1 При проведении внешнего осмотра устанавливается:

- соответствие установки РЭ-1/5С эксплуатационной документации;
- отсутствие механических и электрических повреждений, влияющих на работу;
- возможность установки в камере всех типов градуируемых гидрофонов из номенклатуры гидрофонов, поверяемых на установке РЭ-1/5С;
- отсутствие повреждений в герметичных соединениях, а также выполнение условий поверки, установленных в разделе 5 настоящей Методики поверки.

7.1.2 При проведении периодической поверки следует рассмотреть свидетельство о предыдущей поверке.

7.2 Опробование

Установить в камеру КИС-СД гидрофон из номенклатуры гидрофонов, поверяемых на установке.

Перед опробованием установки ВМФ-РЭ1/5С включить ее в сеть и привести в рабочее положение в соответствии с требованиями раздела 2 руководства по эксплуатации ВМФ-РЭ1/5С 00.00.00 РЭ и прогреть в течение не менее 30 мин.

7.2.1 Опробование излучающего тракта

Для опробования излучающего тракта выполнить следующие операции:

- 1) Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 2) Выбрать в меню раздел «Программы».
- 3) Выбрать в подменю раздел «Рабочий эталон РЭ-1 5С-ВМФ».
- 4) Выбрать в подменю раздел «Программы поверки».
- 5) Запустить на выполнение программу «Опробование излучающего тракта».
- 6) Установить в окне диалога «Опробование излучающего тракта» в текстовом окне «Частота» с помощью движка горизонтальной прокрутки частоту 1000 Гц.
- 7) Нажать командную кнопку «ПУСК».
- Убедиться на слух, что электродинамический излучатель камеры издает звуковой сигнал.
- 9) Повторить операции 6) 8) для частот 800 и 500 Гц.

Убедиться на слух, что излучатель камеры издает звуковой сигнал разной тональности.

7.2.2 Опробование приемного тракта

Для опробования приемного тракта выполнить следующие операции:

- 1) Подать сигнал с выхода ЦАП на вход «ГГ» и через тройник на вход «ПК» устройства УВ-13 блока БАУ-2.
- 2) Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 3) Выбрать в меню раздел «Программы».

- 4) Выбрать в подменю раздел «Рабочий эталон РЭ-1_5С-ВМФ».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Опробование приемного тракта».
- 7) Нажать командную кнопку «ГГ» в окне диалога «Опробование приемного тракта».
- 8) Нажать командную кнопку «Проверка» в окне диалога «Опробование приемного тракта».
- 9) Прочитать результат в текстовом окне «Результат проверки».
- 10) Нажать командную кнопку «ПК» в окне диалога «Опробование приемного тракта».
- 11)Повторить операции 8) и 9).

7.2.3 Опробование тракта ЦАП – УВ-13

Для опробования тракта ЦАП – УВ-13 выполнить следующие операции:

- 1) Соединить разъем «Выход» ЦАП с входами «ГГ» и «ПК» УВ-13.
- 2) Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон РЭ-1_5С-ВМФ».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Опробование тракта ЦАП УВ-13».
- Нажать командную кнопку «ПУСК» в окне диалога «Опробование тракта ЦАП УВ-13».
- 8) Убедиться, что в текстовых окнах «Иизм. ГГ, мВ» и «Иизм. ПК, мВ» появился результат в пределах 0,12 0,18 В.

7.3 Проверка технических характеристик

7.3.1 Проверка частоты ЦАП

Для проверки частоты ЦАП, нагруженного на усилитель мощности, выполнить следующие операции:

- 1) Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 2) Выбрать в меню раздел «Программы».
- 3) Выбрать в подменю раздел «Рабочий эталон РЭ-1 5С-ВМФ».
- 4) Выбрать в подменю раздел «Программы поверки».
- 5) Запустить на выполнение программу «Проверка частоты ЦАП».
- 6) Подключить параллельно к разъему «Выход» на ЦАП частотомер.
- 7) Провести измерения частоты выходного сигнала ЦАП на частотах 1, 10, 20, 125 и 2500 Гц. Измеренные значения не должны отличаться от устанавливаемых значений более чем на 1 %.

7.3.2 Проверка выходного напряжения УМЗ

Для проверки выходного напряжения УМЗ выполнить следующие операции:

- 1) Подключить к разъему «Изл» параллельно внешний вольтметр и измеритель нелинейных искажений.
- 2) Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон РЭ-1 5С-ВМФ».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Выходное напряжение УМЗ».
- 7) Установить в окне диалога «Выходное напряжение УМЗ» в текстовом окне «Частота, Гц» с помощью горизонтальной прокрутки частоту 20 Гц.
- 8) Установить в окне диалога «Выходное напряжение УМЗ» в текстовом окне «Амплитуда, мВ» с помощью горизонтальной прокрутки значение 950 мВ.
- 9) Измерить вольтметром напряжения на выходе УМЗ. Измеренное напряжение должно быть не менее 3 В при Kr <3 %.

- 10) Установить в окне диалога «Выходное напряжение УМЗ» в текстовом окне «Частота, Гц» с помощью горизонтальной прокрутки частоту 250 Гц.
- 11) Измерить вольтметром напряжения на выходе УМЗ. Измеренное напряжение должно быть не менее 3 В при Kr < 3 %.
- 12) Установить в окне диалога «Выходное напряжение УМЗ» в текстовом окне «Амплитуда, мВ» с помощью горизонтальной прокрутки значение 600 мВ.
- 13) Установить в окне диалога «Выходное напряжение УМЗ» в текстовом окне «Частота, Гц» с помощью горизонтальной прокрутки частоту 2500 Гц.
- 14) Измерить вольтметром напряжения на выходе УМЗ. Измеренное напряжение должно быть не менее 3 В при Kr < 3 %.

7.3.3 Проверка возможности поверки гидрофона на частоте 0,1 Гу

Для проверки возможности градуировки гидрофона на частоте 0,1 Гц выполнить следующие операции:

- Соединить разъем «Выход» ЦАП с разъемом «ПК» УВ-13 и через эквивалент гидрофона ЭГ-5 емкостью 15 нФ с разъемом «ГГ» УВ-13.
- 2) Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон РЭ-1 5С-ВМФ».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Возможность градуировки на частоте 0,1 Гц».
- 7) Нажать командную кнопку «Пуск» в окне диалога «Возможность градуировки на частоте 0,1 Гц».
- Прочитать в текстовых окнах значения «M(10), мкВ/Па», «M(0,1), мкВ/Па» и «M(10)/M(0,1)».

Если выполняется условие 0.95 < M(10)/M(0.1) < 1.05, то установка позволяет проводить поверку гидрофонов, начиная с частоты 0.1 Гц.

7.4 Определение метрологических характеристик

7.4.1 Определение нелинейности амплитудной характеристики приемного тракта

Для определения нелинейности приемного тракта установки РЭ-1/5С выполнить следующие операции:

1) Собрать схему в соответствие с рисунком 1.

Рисунок 1

- 2) Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон РЭ-1 5С-ВМФ».
- 5) Выбрать в подменю раздел «Программы поверки».
- Запустить на выполнение программу «Определение нелинейности амплитудной характеристики приемного тракта».
- 7) Установить уровень сигнала на ЦАП 1000 мВ в текстовом окне «Амплитуда» на панели «Параметры сигнала» в окне диалога «Определение нелинейности».
- 8) Установить частоту 1000 Гц в текстовом окне «Частота» на панели «Параметры сигнала» в окне диалога «Определение нелинейности».
- 9) Установить опорное значение ослабления на аттенюаторе, для чего:

- установить на аттенюаторе ослабление 10 дБ;
- нажать командную кнопку «ИЗМЕРИТЬ» на панели «Команды»;
- прочитать значение ослабления **D**, дБ входного сигнала в текстовом окне «дБ» на панели «Ослабление аттенюатора»;
- вычислить значение опорного ослабления A = (10 D) дБ и установить это значение на аттенюаторе;
- нажать командную кнопку «ИЗМЕРИТЬ» на панели «Команды»;
- прочитать реальное значение ослабления входного сигнала на панели «Результат измерения» в текстовом окне «дБ» (значение ослабление должно находиться в пределах 0 ± 0.02 дБ). Принять за U_{max} значение в текстовом окне «мВ» на панели «Результат измерения»;
- занести значение U_{max} в таблицу 5.
- 10) Провести проверку нелинейности измерительного тракта, для чего:
 - установить в текстовом окне « дБ» на панели «Ослабление аттенюатора» ослабления 6; 12; 20; 26; 32; 38; 44 дБ, а на аттенюаторе, соответственно, ослабления **B** = **A**+6; **A**+12; **A**+20; **A**+26; **A**+32; **A**+38; **A**+44 дБ;
 - нажать командную кнопку «ИЗМЕРИТЬ» на панели «Команды»;
 - прочитать значение ослабления сигнала на панели «Результат измерения» в окне «дБ»;
- 11) Принять за U_{min} значение в текстовом окне «мВ» на панели «Результат» при максимальном ослаблении.
- 12) Занести значение U_{min} в таблицу 5.
- 13) Сохранить полученные значения в протоколе, нажав командную кнопку «СОХРА-НИТЬ».
- 14) Повторить операции 8) 13) для значений частот 100,0; 10,0; 1,0; 0,1 Гц.
- 15) Занести результаты измерений в таблицу 4.
- 16) Рассчитать Θ_{AX} по формуле $\Theta_{AX} = \mathbf{B} \mathbf{A} \mathbf{D}$.
- 17) Занести полученные значения в таблицу 4.

	OCTOTO	
-1	acioia	

Γц

Таблица 4

Ослабление В-А, дБ	0	6	12	20	26	32	38	44
Результат измерения D, дБ								
Θ _{АХ} , дБ								

За нелинейность амплитудной характеристики приемного тракта принимается максимальное значение Θ_{AX} , определенное на частотах 1000,0; 100,0; 10,0; 1,0 и 0,1 Гц.

7.4.2 Определение соотношения сигнал/шум (С/Ш)

Для определения соотношения с/ш выполнить следующие операции:

- 1) Установить в камере рабочий измерительный гидрофон.
- 2) Соединить выходной разъем гидрофона с разъемом «ГГ» УВ-13.
- Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 4) Выбрать в меню раздел «Программы».
- 5) Выбрать в подменю раздел «Рабочий эталон РЭ-1_5С-ВМФ».
- 6) Выбрать в подменю раздел «Программы поверки».
- 7) Запустить на выполнение программу «Определение соотношения сигнал шум (С Ш)».

- Установить тип используемого гидрофона и его заводской номер на панели «Гидрофон» в окнах выбора «Тип» и «Номер».
- Установить соответственно частоту 1000 Гц и амплитуду 300 мВ сигнала на панели «Параметры сигнала» при помощи полос горизонтальной прокрутки в текстовых окнах «Частота» и «Амплитуда».
- 10) Нажать командную кнопку «ИЗМЕРИТЬ» на панели «Команды» для начала измерения.
- 11) Получить результаты измерения на панели «Результаты измерений» в текстовых окнах.
- 12) Занести в таблицу 5 значения из текстовых окон панели «Результаты измерений»
- 13) Повторить операции 9) 12) на частотах 10, 100 Гц.
- 14) Сохранить протокол командой «СОХРАНИТЬ» панели «Команды».

Таблица 5

Частота, Гц	10,0	100,0	1000,0
Ur			
U _m ,			
U _{max} , мВ	*		
U _{min} , мВ			
D _{С/Ш} , дБ			
М г, мкВ/Па			
М _{МАХ} , мкВ/Па			
М_{МІN}, мкВ/Па			

Минимальное соотношение сигнал/шум должно быть не менее 20 дБ.

7.4.3 Определение диапазона измерения чувствительности поверяемых гидрофонов Вычислить максимальную **Мтах** чувствительность поверяемых гидрофонов по формуле $\mathbf{Mmax} = \mathbf{M_r} \times \mathbf{U_{max}} / \mathbf{U_r}$,

где M_г - чувствительность гидрофона.

В случае, если условие **Мтах > 10 мВ/Па** не выполняется, то следует повторить измерения по 7.4.1, уменьшив в соответствующее число раз уровень сигнала, устанавливаемого в окне «Амплитуда, мВ» окна диалога «Определение нелинейности».

Вычислить минимальную Mmin чувствительность поверяемых гидрофонов по формулам

$Mmin = max(Mmin_1, Mmin_2)$, где

$$Mmin_1 = M_{U\Pi 1} \times U_{min} / U_{max} = M_{U\Pi 1} \times 0,0063,$$

$$Mmin_2 = 10M\Gamma \times U_m/U_\Gamma$$

где Мип1 - чувствительность ИП1, определенная в 7.4.6;

 \mathbf{U}_{\min} , \mathbf{U}_{\max} - напряжение, определенное в 7.4.1.

Значение Mmax должно быть не менее 10 мВ/Па, а Mmin не более 10 мкВ/Па.

7.4.4 Определение коэффициентов усиления ПУС

Для определения коэффициентов усиления ПУС установки РЭ-1/5С выполнить следующие операции:

1) Собрать схему в соответствии с рисунком 2, используя ЭГГ емкостью 360 пФ.

2) Нажать кнопку «Пуск» в главном окне «WINDOWS».

3) Выбрать в меню раздел «Программы».

4) Выбрать в подменю раздел «Рабочий эталон РЭ-1_5С-ВМФ».

5) Выбрать в подменю раздел «Программы поверки».

6) Выбрать в подменю раздел «Определение коэффициентов усиления ПУС».

7) Запустить на выполнение программу «Определение коэффициентов усиления ПУС».

8) Выбрать в списке на панели «Эквивалент» подключенный к ПУС эквивалент.

9) Установить верхний и нижний диапазон частот на панели «Диапазон частот» от 1 Гц до 3150 Гц.

11) Нажать командную кнопку «СОХРАНИТЬ» после завершения измерений для сохранения результатов в протоколе.

- 12) Нажать командную кнопку «ВЫХОД» на панели «Команды управления» для выхода из программы.
- 13) Повторить операции 1) 12) для ЭГГ 35 пФ.

ции:

 14) Занести полученные значения коэффициентов передачи ПУС при первичной поверке в INI – файл по адресу:

С:\РАБОЧИЙ ЭТАЛОН РЭ1_5С\Гидрофоны\pus_7_gm.ini.

7.4.5 Определение неравномерности звукового поля в полости камеры

Для определения неравномерности звукового поля в камере выполнить следующие опера-

- 1) Установить в камеру рабочий измерительный гидрофон таким образом, чтобы центр его чувствительного элемента находился на расстоянии 35 ± 2 мм от дна камеры.
- 2) Определить чувствительность гидрофона при начальной постановке (M₀) на стандартных треть октавных частотах в диапазоне от 1,6 кГц до 3,15 кГц. Для этого использовать программу «Рабочий эталон РЭ 1/5С. Градуировка гидрофонов в диапазоне частот 0,1-3150 Гц».
- 3) Результаты измерений Мо занести в таблицу 6.
- 4) Установить в камеру рабочий измерительный гидрофон таким образом, чтобы центр его чувствительного элемента переместился на расстояние 10 мм вниз относительно положения начальной постановки.
- 5) Определить чувствительность гидрофона при постановке на расстояние 10 мм вниз относительно положения начальной постановки (**M**₁) на стандартных треть октавных частотах в диапазоне от 1,6 кГц до 3,15 кГц. Для этого использовать программу «Рабочий эталон РЭ 1/5С. Градуировка гидрофонов в диапазоне частот 0,1-3150 Гц».
- 6) Результаты измерений М₁ занести в таблицу 6.
- Установить в камеру рабочий измерительный гидрофон таким образом, чтобы центр его чувствительного элемента переместился на расстояние 10 мм вверх относительно положения начальной установки.
- 8) Определить чувствительность гидрофона при такой постановке (M₂) на стандартных треть октавных частотах в диапазоне от 1,6 кГц до 3,15 кГц. Для этого использовать программу «Рабочий эталон РЭ 1/5С. Градуировка гидрофонов в диапазоне частот 0,1-3150 Гц».
- 9) Результаты измерений M₂ занести в таблицу 6.

						Таблица	6
Частота,	Чувсти при смещении	зительность, ми относительно ц	$\theta_{\kappa 1}$	θ_{κ^2}	Өкис-сл		
кГц	M ₁	M ₀	M ₂	%	%	%	
	-10 мм	0 мм	+10 мм	, ,	, ,		
1,6							
2							
2,5							
3,15							

Погрешность, связанную с неточностью установки поверяемого гидрофона, определяют по формуле:

$$\Theta_{k1} = \frac{M_1 - M_2}{2M_o} \times \frac{tgk\,\Delta}{Sin\,2kh} \times 100\%,$$

где $\mathbf{k} = 2\pi f / \mathbf{c};$

f – частота в Гц;

c = 1450 м/c;

 $\Delta = 2*10^{-3}$ м - погрешность начальной установки гидрофона;

h – шаг перемещения гидрофона, м.

Погрешность θ_{κ_2} , связанную с размерами активного элемента поверяемого гидрофона, определяют по таблице 7.

				Табли	ца 7	
Максимальный размер активного элемента		$\theta_{\kappa 2}, \%$				
поверяемого гидрофона, мм		я час	готы,	кГц		
(радиус – для сферы и ½ высоты для цилиндра)	1,6	2,0	2,5	3,15		
30	0,6	1,0	1,6	2,5		
25	0,4	0,7	1,0	1,6		
20	0,2	0,4	0,6	0,9		
15	0,1	0,2	0,2	0,4		
10	0,0	0,0	0,0	0,0		
5	0,1	0,1	0,1	0,2		
3,5	0,1	0,1	0,2	0,3		

Погрешность, связанную с распределением звукового поля в камере, вычислить по формуле:

$$\Theta_{KMC - C\mathcal{A}} = \left(\Theta_{k1}^2 + \Theta_{k2}^2\right)^{1/2}$$

Значение $\Theta_{KMC - CA}$ не должно превышать 5,0 %.

7.4.6 Определение чувствительности ИП1

Для определения чувствительности ИП1 выполнить следующие операции:

1) Подать сигнал с ИП1 на вход АЦП, присоединив разъем Х6 кабеля №4 к разъёму «вход 1» АЦП.

- 2) Нажать кнопку «Пуск» в главном окне «WINDOWS».
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон РЭ-1 5С-ВМФ».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Определение чувствительности ИП1».
- 7) Запустить программу на измерения кнопкой «ПУСК» и следовать её указаниям.
- 8) Чувствительность ИП1 определить по формуле:

$$M_{H\Pi 1} = \Delta U / \Delta P,$$

- где: ΔU увеличение постоянной составляющей напряжения на выходе датчика, значение из текстового окна «dU» окна диалога «Градуировка ИП1»;
 - ∆Р увеличение статического давления, действующего на ИП1, при помещении в полость камеры калибровочного цилиндра, определяется из формулы:

$$\Delta P = \rho g \Delta h$$

- где: р плотность воды;
 - g ускорение свободного падения;
 - ∆h изменение высоты столба воды в камере, которое определяется по формуле:

$$\Delta h = (D1/D2)^2 h1$$

где: D1 – диаметр погружаемого цилиндра;

- D2 диаметр внутренней полости камеры;
- h1 высота погружаемого цилиндра.

9) Провести измерения чувствительности ИП1 не менее шести раз.

10) Полученные значения Мипії занести в таблицу 8. Рассчитать чувствительности Мипієр и СКО результата измерения **So**(Мипієр) по формулам:

$$\mathbf{M}_{\mathbf{U}\Pi \mathbf{1} \mathbf{c} \mathbf{p}} = \frac{1}{N} \sum_{i}^{N} M_{\mathcal{U}\Pi i}^{i},$$

$$\mathbf{So}(\mathbf{M}_{\mathbf{U}\Pi \mathbf{1} \mathbf{c} \mathbf{p}}) = \sqrt{\frac{\sum_{i}^{N} \left(M_{\mathcal{U}\Pi i}^{i} - M_{\mathcal{U}\Pi c p}^{i}\right)^{2}}{N^{*} (N - 1)}} \cdot \frac{100 \%}{M_{\mathcal{U}\Pi c p}},$$

Значения Мипер и So(Мипер) занести в таблицу 8. Значения Мипер занести в файл С: РАБОЧИЙ ЭТАЛОН РЭ1 5С Комплекс РЭ1 5С Градуировка (slichenie.ini.

Таблица 8

Чувствительность ИП1, мкВ/Па						М	
Измере-	Измере-	Измере-	Измере-	Измере-	Измере-	WIMIlep,	So(Мип1ср),
ние № 1	ние №2	ние № 3	ние № 4	ние № 5	ние № 6	MKD/11a	%

7.4.7 Определение СКО результата измерения при поверке типовых гидрофонов

СКО наблюдений S_o(M_Г) следует определять на всех частотах треть октавного ряда для гидрофонов из перечня, указанного в Руководстве по эксплуатации ВМФ-РЭ1/5С 00.00.00 РЭ.

Для определения $S_0(M_{\Gamma})$ необходимо выполнить не менее N 6 градуировок гидрофона, заново устанавливая его в камере. Полученные значения $M_{\Gamma i}$ (i = 1 .. N) занести в таблицу 9. На каждой треть октавной частоте рабочего диапазона гидрофона рассчитать результат измерения его чувствительности $M_{\Gamma cp}$, и СКО результата измерения So($M_{\Gamma cp}$) по формулам

$$\mathbf{M}_{\Gamma cp} = \frac{1}{N} \sum_{i}^{N} M_{\Gamma i}$$
$$\mathbf{So}(\mathbf{M}_{\Gamma cp}) = \sqrt{\frac{\sum_{i}^{N} \left(M_{\Gamma i} - M_{\Gamma cp} \right)^{2}}{N * (N - 1)}} \cdot \frac{100 \%}{M_{\Gamma cp}}$$

Полученные значения $M_{\Gamma cp}$, So($M_{\Gamma cp}$) занести в таблицу 9.

Таблица 9

Гидрофон типа... заводской номер...

Частота Гц	f,	$M_{\Gamma 1}$	 $M_{\Gamma N}$	$\mathbf{M}_{\Gamma cp}$	$So(M_{\Gamma cp})$
		×			

Значение $So(M_{\Gamma cp})$ не должно превышать 3,0 %.

7.4.8 Определение систематической погрешности установки ВМФ-РЭ1/5С по результатам градуировки рабочего эталона (гидрофона) 1-го разряда

Систематическую погрешность по результатам градуировки рабочего эталона 1-го разряда \mathbf{Q} определяют путем многократной переустановки рабочего эталона (гидрофона) 1-го разряда в камере КИС-СД и измерения его чувствительности на всех частотах треть октавного ряда в рабочем диапазоне установки. Систематическую погрешность \mathbf{Q} на каждой треть октавной частоте определить по формуле

$$\mathbf{Q} = (\mathbf{M}_{\mathbf{x}} - \mathbf{M}_{\mathbf{o}}) / \mathbf{M}_{\mathbf{o}} \times 100\%,$$

где: **М**_x – среднее арифметическое значение чувствительности,

Мо – значение чувствительности рабочего эталона (гидрофона) 1-го разряда, взятое из его свидетельства о проверке.

При выполнении условия:

$$Q \leq 0.8 \cdot \sqrt{\Delta_{p_2}^2 + \Delta^2}$$

 $\Delta_{P_{2}}$ – погрешность применяемого рабочего эталона 1-го разряда, в %, установгде: ке присваивается статус рабочего эталона 2-го разряда с относительной доверительной погрешностью Δ , %.

В случае, когда данное условие не выполняется, следует повторить измерения по п.7.4.6 (определение чувствительности ИП1), а затем по п.7.4.8, применяя уже другой рабочий эталон (гидрофон) 1-го разряда. В случае если условие вновь не выполняется, установка бракуется и на нее выдается извещение о непригодности.

1. Допускается превышение систематической погрешности, но не более Примечания чем на 2-х частотах из всего диапазона. При этом данные частоты не должны идти подряд и систематическая погрешность на этих частотах не должна превышать значения 1,3 дБ.

2. Если значение О выходит за пределы ± 5 %. боле чем для 20-ти треть октавных частот, то рекомендуется при периодической поверке проводить определение чувствительности ИП1 по п.7.4.6.

8 Оформление результатов поверки

8.1 При проведении поверки ведут протокол произвольной формы или по форме, приведенной в приложении 1 МИ 2040-89, в котором основные результаты измерений представляются в виде таблиц 1-9.

8.2 При отрицательных результатах по любому из пунктов методики поверки дальнейшее проведение поверки прекращается, установка бракуется, к дальнейшему применению не допускается и на нее выдается извещение о непригодности в соответствии с требованиями ПР 50.2.006 с указанием причины.

Начальник отдела 32 ГНИИИ МО РФ Начальник лаборатории ГМЦГИ ФГУП «ВНИИФТРИ» Главный конструктор разработки комплекса ВМФ-РЭ1/5

В.В. Супрунюк

А.Е. Исаев

С.М. Лихачев

Установка ВМФ-РЭ1/5В

МЕТОДИКА ПОВЕРКИ

ВМФ-РЭ1/5 00.00.00 Д1

1 Общие сведения

Настоящая методика поверки распространяется на установку для градуировки гидрофонов ВМФ-РЭ1/5В (далее Установка ВМФ-РЭ1/5В), предназначенную для поверки (градуировки) рабочих измерительных гидрофонов и головок гидроакустических методом взаимности в диапазоне частот от 3,15 кГц до 200,0 кГц и определения характеристик (диаграмм) направленности измерительных гидрофонов и гидроакустических головок в диапазоне частот от 4 кГц до 200 кГц.

Настоящая методика поверки соответствует требованиям МИ 2526 и МИ 2040.

Рекомендуемый межповерочный интервал не должен превышать 12 месяцев.

Перед проведением поверки необходимо предварительно ознакомиться с Руководством по эксплуатации на рабочий эталон ВМФ-РЭ1/5В 00.00.00 РЭ.

2 Операции поверки

2.1 При проведении поверки Установки ВМФ-РЭ1/5В должны выполняться операции, приведенные в таблице 1.

			Таблица 1
Наименование	Номер пункта	Проведение	операции при
операции	методики поверки	первичной поверке	периодической поверке
1 Внешний осмотр	7.1	да	да
2 Опробование	7.2		
2.1 Опробование излучающего тракта	7.2.1	да	да
2.2 Опробование приемного тракта	7.2.2	да	да
2.3 Опробование поворотных устройств	7.2.3	да	да
3 Проверка технических характеристик	7.3		
3.1 Определение сопротивления изоля- ции	7.3.1	да	да
3.2 Определение электрической емко- сти	7.3.2	да	да
3.3 Проверка измерения характеристи- ки направленности	7.3.3	да	нет
3.4 Определение частоты и амплитуды сигнала на выходе УМ-2	7.3.4	да	нет
3.5 Проверка коэффициента передачи измерительного тракта	7.3.5	да	нет
4 Определение метрологических харак- теристик	7.4		
4.1 Определение нелинейности ампли- тудной характеристики приемного тракта	7.4.1	да	нет
4.2 Определение соотношения сиг- нал/шум	7.4.2	да	нет
4.3 Определение диапазона чувстви- тельности поверяемых гидрофонов	7.4.3	да	нет
4.4 Определение коэффициентов уси- ления ПУС.	7.4.4	да	да

Окончание таблицы 1						
I I and a second a se	Номер пункта	Проведение операции при				
операции	методики поверки	первичной поверке	периодической поверке			
4.5 Определение погрешности, связанной с отклонением рас- пределения звукового поля от закона P· r = const	7.4.5	да	нет			
4.6 Определение СКО результата измерения при поверке типовых гидрофонов.	7.4.6	да	нет			
4.7 Определение систематиче- ской погрешности ВМФ-РЭ1/5 по результатам градуировки ра- бочего эталона (гидрофона) 1-го разряда	7.4.7	да	да			

3 Средства поверки

3.1. При проведении поверки должны быть применены следующие средства измерений и вспомогательные устройства, приведенные в таблице 2.

	І аолица 2
№ пункта	Наименование и тип основного или вспомогательного средства
методики	поверки, метрологические и основные технические характеристики
поверки	средства поверки
7.3.4	Осциллограф С9-27, $\Delta \le 1,0~$ %, режим запоминания
7.3.1	Тераомметр Е6-17 R > 100 МОм, Δ ≤ 10 %
7.3.2	Измеритель емкостей E6-15, диапазон емкостей от 20 до 50000 пФ, $\Delta \le 5$ %
7.3.3, 7.4.1,	Аттенюатор образцовый ступенчатый АО-4,
7.4.4	диапазон ослабления 0 – 110 дБ, $\theta \le 0,05$ дБ
7.4.7	Рабочий эталоны единицы звукового давления в водной среде 1-го разряда
	ГИЗЗ, ГИЗ2, диапазон частот 3,15 – 200 кГц, 0,5 $\leq \theta \leq$ 1,0 дБ.
	Вспомогательное оборудование
7.3.5, 7.4.4	Эквиваленты гидрофона, $\theta \leq 5$ %:
	ЭГГ 24 пФ; ЭГГ 35 пФ; ЭГГ 360 пФ; ЭГ–15 нФ
7.2, 7.4.6	Рабочие измерительные гидрофоны или гидроакустические головки, диапа-
	зон частот 3,15 – 200 кГц
7.4.5, 7.4.6	Рабочий измерительный гидрофон ГИ20, ГИ22 (ГИ21), диапазон частот
	3,15 – 200 кГц, θ ≤ 3 дБ

3.2. Все средства поверки должны иметь действующий документ о поверке.

3.3. Допускается применение других средств измерений, удовлетворяющих требованиям настоящей методики поверки и обеспечивающих измерение соответствующих параметров с требуемой погрешностью.

Вспомогательные материалы, необходимые для проведения поверки и нормы их расхода, приведены в таблице 3.

- T	~	-
10	DO TTITI	ro 4
10	101101	10 1
~ ~		

Наименование материала	Нормы расхода, кг
Ветошь обтирочная ОСТ-63-46-84	3,0
Масло приборное МВП ГОСТ 1805-76	0,5
Смазка ЦИАТИМ-21 ГОСТ 9433-80	0,3
Спирт этиловый ГОСТ 18300-72	3,0
Мыло хозяйственное СТ 13-368-85	0,5
Вата хлопчатобумажная ГОСТ 5679-85	0,3

4 Требования безопасности и требования к квалификации поверителей

4.1. При выполнении операций поверки должны быть соблюдены все требования техники безопасности, регламентированные ГОСТ 12.1.019-79, ГОСТ 12.1.038082, ГОСТ 12.3.0019-80, действующими «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также всеми действующими местными инструкциями по технике безопасности.

4.2. К выполнению операций поверки и обработке результатов наблюдений могут быть допущены лица, аттестованные в качестве поверителя в установленном порядке.

4.3. Персонал должен иметь допуск к работам в электроустановках до 1000 В.

5 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

- температура воды (20 ± 5) °С;
- атмосферное давление (100 ± 4) кПа (750 ± 30) мм рт. ст.;
- относительная влажность воздуха до 80 % при температуре окружающего воздуха (20 ± 5) °C;
- напряжение сети (220 ± 11) В;
- частота сети (50 ± 1) Гц.

6 Подготовка к поверке

6.1 На поверку представляют Установку ВМФ-РЭ1/5В, полностью укомплектованную в соответствии с ЭД на нее (ВМФ-РЭ1/5 00.00.00 ФО и ВМФ-РЭ1/5В 00.00.00 РЭ) за исключением ЗИП.

При периодической поверке представляют дополнительно свидетельство и протокол о предыдущей поверке.

6.2 Во время подготовки Установки ВМФ-РЭ1/5В к поверке поверитель знакомится с нормативной документацией на установку и готовит все необходимые материалы и средства измерений к проведению поверки.

6.3 Поверитель собирает установку и подготавливает ее к включению в сеть в соответствии с ее ЭД (ВМФ-РЭ1/5В 00.00.00 РЭ).

7 Проведение поверки.

7.1 Внешний осмотр

- 7.1.1 При проведении внешнего осмотра устанавливается:
- соответствие Установки ВМФ-РЭ1/5В эксплуатационной документации ВМФ-РЭ1/5В 00.00.00 РЭ;
- отсутствие механических и электрических повреждений, влияющих на работу установки;
 - возможность постановки на центральную штангу УКП2 гидрофонов и гидроакустических головок из перечня формуляра ВМФ-РЭ1/5 00.00.00 ФО.
 - отсутствие повреждений в герметичных соединениях, а также выполнение условий поверки, установленных в разделе 5 настоящей методики поверки.

7.2 Опробование

Установить на центральную штангу УКП гидрофон из перечня формуляра ВМФ-РЭ1/5 00.00.00 ФО.

Перед опробованием установку включить в сеть, привести в рабочее положение в соответствии с требованиями раздела 2 руководства по эксплуатации ВМФ-РЭ1/5В 00.00.00 РЭ и прогреть в течение не менее 30 мин.

7.2.1 Опробование излучающего тракта

Для опробования излучающего тракта Установки ВМФ-РЭ1/5В выполнить следующие операции:

- 1) Нажать в главном окне «WINDOWS» кнопку «Пуск».
- 2) Выбрать в меню раздел «Программы».
- 3) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1 5В».
- 4) Выбрать в подменю раздел «Программы поверки».
- 5) Запустить на выполнение программу «Опробование излучающего тракта».
- 6) Установить на панели «РЕЖИМ» кнопку выбора «ПАУЗА».
- 7) Подключить ОП1 к разъему «ВХОД ОП» устройства коммутационного УК-2, излучатель И1 к разъему «ИЗЛ» УКП2.
- 8) Включить электропитание усилителя мощности радиоимпульсного УМ-2.
- 9) Установить на панели «Излучатель» кнопку выбора «ОП».
- 10) Установить на панели «РЕЖИМ» кнопку выбора «ИЗЛУЧЕНИЕ».
- 11) Убедиться на слух, что обратимый преобразователь издает звуковой сигнал.
- 12) Установить на панели «Излучатель» кнопку выбора «И».
- 13) Убедиться на слух, что излучатель издает звуковой сигнал.
- 14) Установить на панели «РЕЖИМ» кнопку выбора «ПАУЗА».
- 15) Подключить ОП2 к разъему «ВХОД ОП» устройства коммутационного УК-2, излучатель И2 к разъему «ИЗЛ» УКП2.
- 16) Повторить п.п. 9)-14).
- 17) Подключить ОПЗ к разъему «ВХОД ОП» устройства коммутационного УК-2, излучатель ИЗ к разъему «ИЗЛ» УКП2.
- 18) Повторить п.п. 9)-14).
- 19) Окончить работу программы «Опробование излучающего тракта», нажав командную кнопку «ВЫХОД».
- 20) Выключить электропитание УМ-2.

Результаты опробования излучающего тракта удовлетворительные, если все преобразователи излучают слышимый звуковой сигнал.

7.2.2 Опробование приемного тракта

Для опробования приемного тракта Установки ВМФ-РЭ1/5В выполнить следующие операции:

- 1) Нажать в главном окне «WINDOWS» кнопку «Пуск».
- 2) Выбрать в меню раздел «Программы».
- 3) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1 5В».
- 4) Выбрать в подменю раздел «Программы поверки».
- 5) Запустить на выполнение программу «Опробование приемного тракта».
- 6) Подать сигнал с выхода ЦАП на вход «ГГ» УВ-2, через ЭГ-5.
- 7) Установить на панели «ПРИЕМНИК» кнопку выбора «ГГ».
- 8) Нажать на панели «СИГНАЛ» кнопку «Проверка».
- 9) Прочитать на панели «СИГНАЛ» в текстовом окне «Результат проверки» результат проверки.
- 10) Подать сигнал с выхода ЦАП на вход «ОП» УК-2, через ЭГ-5.
- 11) Установить на панели «ПРИЕМНИК» кнопку выбора «ОП».
- 12) Нажать на панели «СИГНАЛ» кнопку «Проверка».
- 13) Прочитать на панели «СИГНАЛ» в текстовом окне «Результат проверки» результат проверки.
- 14) Окончить работу программы «Опробование приемного тракта», нажав командную кнопку «ВЫХОД».

В случае неудовлетворительного результата проверки отключить установку ВМФ-РЭ1/5В от сети и проверить состояние всех контактов и кабелей, после чего повторить проверку.

7.2.3 Опробование поворотных устройств

Для опробования поворотных устройств УКП2 (УПГГ, УПИ, УПОП) выполнить следующие операции:

1) Нажать в главном окне «WINDOWS» кнопку «Пуск»

- 2) Выбрать в меню раздел «Программы».
- 3) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1 5В».
- 4) Выбрать в подменю раздел «Программы поверки».
- 5) Запустить на выполнение программу «Опробование УП».
- 6) Установить на панели «Двигатели» кнопку выбора «УПГГ».
- 7) Установить на панели «Режим» кнопку выбора «Исх. положение».
- 8) Установить на панели «Режим» с помощью полосы горизонтальной прокрутки угол исходного положения, например 45°.
- 9) Нажать на панели «Управление» командную кнопку «ПУСК».
- 10) Проверить положение УПГГ после того, как активной станет командная кнопка «СТОП». Проверка завершена удовлетворительно, если УПГГ установлено в исходное положение.
- 11) Установить на панели «РЕЖИМ» кнопку выбора «0°».
- 12) Нажать на панели «Управление» командную кнопку «ПУСК».
- 13) Проверить положение УПГГ по указателю, после того, как активной станет командная кнопка «СТОП». Проверка завершена удовлетворительно, если УПГГ установлен в положение 0°.
- 14) Повторить операции 11)-13), устанавливая кнопки выбора «90°» и «180°», соответственно.
- 15) Установить на панели «РЕЖИМ» кнопку выбора «Режим Х.Н.».
- 16) Нажать на панели «Управление» командную кнопку «ПУСК».
- 17) Проверить положение УПГГ по указателю, после того, как активной станет командная кнопка «СТОП». Проверка завершена удовлетворительно, если УПГГ

18) Установить на панели «Двигатели» кнопку выбора «УПИ».

19) Повторить операции 11)-14) для устройства УПИ.

20) Установить на панели «Двигатели» кнопку выбора «УПОП».

21) Повторить операции 11)-14) для устройства УПОП.

В случае неудовлетворительного результата испытаний, отключить УКП2, проверить состояние всех контактов и кабелей, после чего повторить испытания.

7.3 Проверка технических характеристик

7.3.1 Определение сопротивления изоляции

Определение сопротивления изоляции следует проводить тераомметром на пределе измерений 10⁸ Ом.

Для определения сопротивления изоляции излучателей И1-ИЗ и обратимых преобразователей ОП1-ОПЗ измерить сопротивление между сигнальным контактом и экраном их выходных разъемов типа СР-50.

Измеренные значения должны быть не менее 100 МОм.

7.3.2 Определение электрической емкости

Определение электрической емкости и тангенса угла потерь следует проводить измерителем емкостей.

Емкости излучателей И1-ИЗ и обратимых преобразователей ОП1-ОПЗ измерить между сигнальным контактом и экраном их выходных разъемов типа CP-50. Емкости преобразователей:

И1, ОП1 должны быть не менее 10 н Φ ;

И2, ОП2 должны быть не менее 5 н Φ ;

ИЗ, ОПЗ должны быть не менее 3 н Φ

а тангенс угла потерь не должен превышать 0,035.

7.3.3 Проверка измерения характеристики направленности

А) Проверка диапазона частот измерения характеристик направленности гидрофонов

Для проверки диапазона частот выполнить следующие операции:

1) Подать сигнал с выхода ЦАП на вход «ГГ» УВ-2, через ЭГ-5.

2) Нажать в главном окне «WINDOWS» кнопку «Пуск».

3) Выбрать в меню раздел «Программы».

4) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1 5В».

5) Выбрать в подменю раздел «Программы поверки».

6) Запустить на выполнение программу «Проверка режима ХН».

7) Установить кнопку выбора «ЦАП».

8) Установить в диалоговом окне «Параметры»:

Параметр	Значение
Частота	4 кГц
00	0 -5
0-	ОДБ
600	+5 дБ
120°	-5 дБ
180°	-10 дБ
240°	-15 дБ
300°	0 дБ

- 9) Нажать в окне диалога «Проверка режима ХН» командную кнопку «ПУСК».
- 10) Получить в графическом окне «Диаграмма направленности» замкнутую кривую.
- 11) Убедиться в наличии сообщения в строке состояния «Измерение успешно завершено».
- 12) Повторить операции 8) 11) для частоты 200 кГц.

В случае успешного проведения измерений, диапазон частот измерения характеристик направленности гидрофонов соответствует от 4 кГц до 200 кГц.

Б) Проверка динамического диапазона определения неравномерности характеристики направленности

- Для проверки динамического диапазона выполнить следующие операции:
 - Подать сигнал с выхода ЦАП на вход «ГГ» УВ-2 через внешний аттенюатор и ЭГ-5.
- 2) Нажать в главном окне «WINDOWS» кнопку «Пуск».
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1/5В».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Проверка режима ХН».
- 7) Установить кнопку выбора «Аттенюатор».
- 8) Убедиться, что в диалоговом окне «Параметры» будет установлено:

Параметр	Значение					
Частота	4 кГц					
0°	0 дБ					
60°	+5 дБ					
120°	+ 10 дБ					
180°	+ 15 дБ					
240°	+ 20 дБ					
300°	+ 15 дБ					

- 9) Устанавливать на аттенюаторе значения ослабления из ряда 5,0; 10,0; 15,0; 20 и 15,0 дБ при прохождении УП углов поворота 60°, 120°, 180°, 240° и 300° поочередно соответственно.
- 10) Нажать в окне диалога «Проверка режима ХН» командную кнопку «ПУСК».
- 11) Получить в графическом окне «Диаграмма направленности» замкнутую кривую с неравномерностью 20,0 ± 1,0 дБ.
- 12) Убедиться в наличии сообщения в строке состояния «Измерение успешно завершено».
- 13) Повторить операции 8) 12) для частоты 200 кГц.

7.3.4 Определение частоты и выходного напряжения УМ-2.

Для определения частоты и выходного напряжения УМ-2 выполнить следующие операции:

- 1) Собрать схему в соответствии с рис. 1.
- 2) Установить на осциллографе режим измерения однократного импульсного сигнала.
- 3) Подключить к разъему «ВХОД ОП» УК-2 обратимый преобразователь ОП1.
- 4) Нажать в главном окне «WINDOWS» кнопку «Пуск».
- 5) Выбрать в меню раздел «Программы».
- 6) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1_5В».
- 7) Выбрать в подменю раздел «Программы поверки».
- 8) Запустить на выполнение программу «Проверка сигнала на выходе УМ-2».
- 9) Выбрать на панели «Тип гидрофона» в окне выбора «Тип» тип используемого обратимого преобразователя «ОП1».
- 10) Установить на панели «Частота, кГц» значение частоты сигнала 10 кГц.
- 11) Установить на панели «Амплитуда, мВ» значение амплитуды сигнала 300 мВ.
- 12) Нажать командную кнопку «ИЗЛУЧИТЬ».
- 13) Измерить частоту и амплитуду сигнала с помощью осциллографа.
- 14) Подключить к разъему «ВХОД ОП» УК-2 обратимый преобразователь ОП2.
- 15) Выбрать на панели «Тип гидрофона» в окне выбора «Тип» тип используемого обратимого преобразователя «ОП2».
- 16) Установить на панели «Частота, кГц» значение частоты сигнала 20 кГц.
- 17) Установить на панели «Амплитуда, мВ» значение амплитуды сигнала 300 мВ.
- 18) Нажать командную кнопку «ИЗЛУЧИТЬ».
- 19) Измерить частоту и амплитуду сигнала с помощью осциллографа.
- 20) Подключить к разъему «ВХОД ОП» УК-2 обратимый преобразователь ОПЗ.
- 21) Выбрать на панели «Тип гидрофона» в окне выбора «Тип» тип используемого обратимого преобразователя «ОПЗ».
- 22) Установить на панели «Частота, кГц» значение частоты сигнала 100 кГц.
- 23) Установить на панели «Амплитуда, мВ» значение амплитуды сигнала 300 мВ.
- 24) Нажать командную кнопку «ИЗЛУЧИТЬ».
- 25) Измерить частоту и амплитуду сигнала с помощью осциллографа.

Значения измеренной частоты не должны отличаться от значений, выводимых на экран монитора более чем на 1 %.

Значения измеренной амплитуды не должны отличаться от значений, выводимых на экран монитора более чем на 20 %.

7.3.5 Проверка коэффициента передачи измерительного тракта

Для проверки коэффициента передачи *Кп* измерительного тракта выполнить следующие операции:

 Собрать схему в соответствии с рис. 2. В качестве эквивалента гидрофона использовать эквивалент гидрофона ЭГ-5 (15 нФ)

Рис. 2

- 2) Нажать» в главном окне «WINDOWS» кнопку «Пуск.
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1_5В».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Проверка коэффициента передачи измерительного тракта».
- 7) Установить на панели «Диапазон частот» верхний и нижний диапазон частот.
- 8) Установить на панели «Уровень сигнала» значение амплитуды сигнала 300 мВ.
- 9) Нажать на панели «Команды управления» командную кнопку «ПУСК» для начала измерений.
- 10) Вычислить коэффициент передачи Кп по формуле:

$$Kn = \frac{U_1}{U_2},$$

где U_1 - напряжение на входе «Вход УВ-2» УВ-2;

U, - напряжение на входе «Вход ОП» УВ-2.

11) Сохранить протокол измерений, используя командную кнопку «ПРОТОКОЛ».

Измеренные значения коэффициента передачи измерительного тракта должны находиться в пределах 0,98 – 1,02.

7.40пределение метрологических характеристик

7.4.1 Определение нелинейности амплитудной характеристики приемного тракта Для определения нелинейности амплитудной характеристики приемного тракта выполнить следующие операции:

- 1) Собрать схему в соответствие с рис. 3.
- 2) Нажать» в главном окне «WINDOWS» кнопку «Пуск.
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1 5В».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Определение нелинейности амплитудной характеристики приемного тракта».
- 7) Установить на панели «Параметры сигнала» значения параметров испытательного сигнала:
 - уровень сигнала на выходе ЦАП 400 мВ;
- 8) Установить на панели «Параметры сигнала» частоту сигнала ЦАП 3,15 кГц.
- 9) Установить на панели «Аттенюатор» в окне «Ослабление, дБ» значение ослабления аттенюатора 10 дБ.
- 10) Нажать на панели «Команды управления» командную кнопку «ПУСК» и получить на панели «Результат» в окне «дБ» измеренное значение **D**, дБ ослабления сигнала на входе измерительного тракта. Вычислить значение опорного ослабления **A** = (10 **D**) дБ и установить на аттенюаторе это значение опорного ослабления.

- 11) Нажать кнопку «ИЗМЕРИТЬ» и получить на панели «Результат» в окне «дБ» измеренное значение ослабления входного сигнала (значение ослабления должно находиться в пределах 0 ± 0,02 дБ). Принять за U_{max} значение в текстовом окне «мВ» на панели «Результат».
- 12) Провести определение нелинейности измерительного тракта, для чего:
 - устанавливать на панели «Аттенюатор» в окне «Ослабление, дБ» величины ослабления от 4 дБ до 72 дБ с шагом 4 дБ, а на аттенюаторе, соответственно, величины ослабления от А+4 дБ до А+72 дБ с шагом 4 дБ;
 - запускать при каждой установленной величине ослабления выполнение измерений командной кнопкой «ИЗМЕРИТЬ» на панели «Команды управления» и получать измеренные значения ослабления сигнала на панели «Результат» в окне «дБ»;
 - принять за U_{min} значение в текстовом окне «мВ» на панели «Результат» при ослаблении 72 дБ.
- 13) Сохранить протокол, нажав на панели «Команды управления» командную кнопку «ПРОТОКОЛ».
- 14) Повторить операции 8) 13) на частотах 40, 100, 200 кГц.
- 15) Занести результаты измерений в таблицу 6.
- 16) Рассчитать Θ_{AXi} по формуле $\Theta_{AXi} = \mathbf{B} \mathbf{A} \mathbf{D}$.
- 17) Занести полученные значения в таблицу.

Частота _____Гц, \mathbf{U}_{max} = ____, \mathbf{U}_{min} = ____, Θ_{AXimax} =

Таблица

Ослабление В, дБ	0	4	8	12	16	 68	72
Результат измерения D, дБ							
Θ _{АХі} , дБ							

7.4.2 Определение соотношения сигнал/шум.

Для определения соотношения сигнал/шум выполнить следующие операции:

- Установить на УКП2 обратимый преобразователь ОП1, подключив его к разъему «ВХОД ОП» УК-2, и излучатель И1, подключив его к разъему «ИЗЛ» УМ-2.
- 2) Нажать в главном окне «WINDOWS» кнопку «Пуск».
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1 5В».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Определение соотношения сигнал-шум».
- 7) Выбрать на панели «Источник-Приемник» в окне выбора пару И1-ОП1.
- 8) Установить положения ОП1 и И1, измеренные по указательной линейке.
- 9) Установить при помощи полос горизонтальной прокрутки на панели «Диапазон частот» в текстовом окне «от» частоту 5 кГц, в текстовом окне «до» 5 кГц.
- 10) Нажать командную кнопку «ИЗМЕРИТЬ».
- 11) Получить сообщение об успешном завершении измерений.
- 12) Получить протокол с результатами измерений, нажав командную кнопку «ПРОТОКОЛ».
- 13) Установить на УКП2 обратимый преобразователь ОП2, подключив его к разъему «ВХОД ОП» УК-2, и излучатель И2, подключив его к разъему «ИЗЛ» УМ-2.
- 14) Выбрать на панели «Источник-Приемник» в окне выбора пару И2-ОП2.

- 15) Установить положения ОП2 и И2, измеренные по указательной линейке.
- 16) Установить при помощи полос горизонтальной прокрутки на панели «Диапазон частот» в текстовом окне «от» частоту 50 кГц, в текстовом окне «до» 50 кГц.
- 17) Нажать командную кнопку «ИЗМЕРИТЬ».
- 18) Получить сообщение об успешном завершении измерений.
- 19) Получить протокол с результатами измерений, нажав командную кнопку «ПРОТОКОЛ».
- 20) Установить на УКП2 обратимый преобразователь ОП3, подключив его к разъему «ВХОД ОП» УК-2, и излучатель И3, подключив его к разъему «ИЗЛ» УМ-2.
- 21) Выбрать на панели «Источник-Приемник» в окне выбора пару ИЗ-ОПЗ.
- 22) Установить положения ОПЗ и ИЗ, измеренные по указательной линейке.
- 23) Установить при помощи полос горизонтальной прокрутки на панели «Диапазон частот» в текстовом окне «от» частоту 100 кГц, в текстовом окне «до» 100 кГц.
- 24) Нажать командную кнопку «ИЗМЕРИТЬ».
- 25) Получить сообщение об успешном завершении измерений.
- 26) Получить протокол с результатами измерений, нажав командную кнопку «ПРОТОКОЛ».
- 27) Повторить операции 23) 26) для частоты 200 кГц.

В таблице протокола приняты следующие обозначения:

U_{И-ОП} – измеренное напряжение с выхода ОП при номинальном уровне сигнала на И;

U_Ш – измеренное напряжение с выхода ОП при отсутствии сигнала на И;

Моп – чувствительность ОП;

М_{max} – максимальная чувствительность поверяемых гидрофонов;

M_{min} – минимальная чувствительность поверяемых гидрофонов;

 $D_{C/III}$ – соотношение сигнал/шум, рассчитанное по формуле:

$$D_{c/III} = 20 \log (U_{H-OII} / U_{III}).$$

Соотношение сигнал/шум должно быть не менее 20 дБ.

7.4.3 Определение диапазона чувствительности поверяемых гидрофонов.

Максимальную M_{max} и минимальную M_{min} чувствительность поверяемых гидрофонов определить по формулам:

$$\begin{split} \mathbf{M}_{max} &= \mathbf{M}_{O\Pi} \times \mathbf{U}_{max} \ / \ \mathbf{U}_{H\text{-}O\Pi}, \\ \mathbf{M}_{min} &= \max(\mathbf{M}_{min1}, \mathbf{M}_{min2}), \\ \mathbf{M}_{min1} &= \mathbf{M}_{O\Pi} \times \mathbf{U}_{min} \ / \ \mathbf{U}_{H\text{-}O\Pi}, \\ \mathbf{M}_{min2} &= 20 \times \mathbf{M}_{O\Pi} \times \mathbf{U}_{u} \ / \ \mathbf{U}_{O\Pi}; \end{split}$$

где:

Моп – чувствительность ОП, взятая из протокола по п.7.4.2;

 $U_{\text{И-ОП}}$ — напряжение на выходе ОП в режиме работы излучателя, взятое из протокола по п.7.4.2;

Uш – значение из п.7.4.2;

U_{max} и **U**_{min} – см. п.7.4.1.

Значение M_{max} должно быть не менее 50 мВ/Па, а M_{min} не более 50 мкВ/Па.

7.4.4 Определение коэффициентов усиления ПУС.

Для определения коэффициентов усиления ПУС Установки ВМФ-РЭ1/5В выполнить следующие операции:

1) Собрать схему в соответствии с рис. 4, используя ЭГГ емкостью 360 пФ.

2) Нажать в главном окне «WINDOWS» кнопку «Пуск».

- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1_5В».
- 5) Выбрать в подменю раздел «Программы поверки».
- 6) Запустить на выполнение программу «Определение коэффициентов усиления ПУС».
- 7) Выбрать на панели «Эквивалент» в списке значение емкости ЭГГ, подключенного к ПУС.
- Установить на панели «Диапазон частот» диапазон частот от 1,6 до 200 кГц, а на панели «Уровень сигнала» - уровень входного сигнала 400 мВ.
- 9) Нажать командную кнопку «ПУСК» для запуска измерений.
- 10) Получить сообщение о завершении измерений.
- 11) Сохранить протокол, используя кнопку «ПРОТОКОЛ».
- 12) Нажать на панели «Команды управления» командную кнопку «ВЫХОД» для выхода из программы.
- 13) Повторить операции 1) 12) для ЭГГ емкостью 35 и 24 пФ.
- 14) Занести полученные значения коэффициентов усиления ПУС при первичной поверке в INI-файл по адресу:

"С:\ РАБОЧИЙ ЭТАЛОН РЭ1 5В\Гидрофоны\pus 7 gm.ini".

При периодической поверке необходимо проверить соответствие полученных значений коэффициентов передачи ПУС данным, хранящимся в файле. Отличие значений не должно превышать 2 %.

В случае если отличие находится в пределах ± (2 - 5) %, то следует записать новые значения в INI-файл "С:\РАБОЧИЙ ЭТАЛОН РЭ1_5В\Гидрофоны\pus_7_gm.ini", а если отклонения превысят 5 %, то повторить калибровку ПУС. Если повторная калибровка завершиться неудовлетворительно, то ПУС бракуется.

7.4.5 Определение погрешности, связанной с отклонением распределения звукового поля от закона $P \cdot r = const.$

Для определения погрешности, связанной с отклонением распределения звукового поля от закона P· r = const выполнить следующие операции:

- А) Исследования для пары преобразователей ОП-И:
- 1) Установить на штангах УКП2 пару преобразователей ОП1, И1.
- 2) Нажать в главном окне «WINDOWS» кнопку «Пуск».
- 3) Выбрать в меню раздел «Программы».
- 4) Выбрать в подменю раздел «Рабочий эталон ВМФ-РЭ1_5В».
- 5) Выбрать в подменю раздел «Программы поверки».

- 7) Выбрать в окне выбора «Источник приемник» пару «И1-ОП1».
- 8) Установить панели «Диапазон частот» в окнах «от» и «до» частоту 5 кГц.
- 9) Нажать командную кнопку «ИЗМЕРИТЬ».
- 10) Установить штанги УКП2 с ОП1 и И1 в положение, указанное в диалоговом окне «Изменение дистанции...».
- 11) Нажать командную кнопку «ОК».
- 12) Повторять операции 10) и 11) до появления сообщения «Измерения для пары И1–ОП1 завершены».
- 13) Сохранить протокол измерений, нажав командную кнопку «ПРОТОКОЛ».
- 14) Повторить операции 8) 13) для частот 10 и 20 кГц.
- 15) Повторить операции 1) 13) для пары преобразователей ОП2-И2 для частот 10, 20 и 40 кГц.
- 16) Повторить операции 1) 13) для пары преобразователей ОПЗ-ИЗ для частот 40, 80 и 160 кГц.
- Б) Исследования для пары преобразователей ОП-ГГ:
- 1) Установить на центральной штанге УКП2 измерительный гидрофон типа ГИ20.
- 2) Установить на штангу УКП2 преобразователь ОП1.
- 3) Нажать в главном окне «WINDOWS» кнопку «Пуск».
- 4) Выбрать в меню раздел «Программы».
- 5) Выбрать в подменю раздел «Установка ВМФ-РЭ1/5В».
- 6) Выбрать в подменю раздел «Программы поверки».
- 7) Запустить на выполнение программу «Определение неравномерности поля».
- 8) Выбрать пару «ОП1-ГГ» в окне выбора «Источник приемник».
- 9) Установить на панели «Диапазон частот» в окнах «от» и «до» частоту 5 кГц.
- 10) Нажать командную кнопку «ИЗМЕРИТЬ».
- 11) Установить штангу УКП2 с ОП1 в положение, указанное в диалоговом окне «Изменение дистанции...».
- 12) Нажать командную кнопку «ОК».
- 13) Повторять операции 11) и 12) до появления сообщения «Измерения для пары ОП1-ГГ завершены».
- 14) Сохранить протокол измерений, нажав командную кнопку «ПРОТОКОЛ».
- 15) Повторить операции 9) 14) для частот 10 и 20 кГц.
- 16) Повторить операции 1) 15) для пары преобразователей ОП2-ГГ для частот 10, 20 и 40 кГц.
- 17) Повторить операции 1) 14) для пары преобразователей ОП2-ГГ для гидрофона типа ГИ-22 (ГИ-21) для частоты 40 кГц.
- 18) Повторить операции 1) 14) для пары преобразователей ОП3-ГГ для гидрофона типа ГИ-22 (ГИ-21) для частот 40, 80 и 160 кГц.

В протоколах применены следующие обозначения:

 $U_i^*R_i$ – произведение напряжения $U_i(MB)$ измеренного на выходе преобразователя, работающего в режиме приема, на дистанцию $R_i(MM)$ между парой преобразователей в i-ом положении;

UR – среднее значение, определенное по всем ($U_i * R_i$) на данной частоте;

$$Sur = \frac{\max[U_i^* R_i - UR]}{UR} * 100 \%.$$

За оценку величины отклонения распределения звукового поля от закона Pr = const, следует принять значение, определенное по формуле:

$$\Theta_{UR} = 2\sqrt{Sur_{\mu-O\Pi}^2 + 2Sur_{O\Pi-\Gamma\Gamma}^2}$$

где:

Sur_{И-ОП} – значение, полученное по формуле *Sur*, для пары преобразователей И-ОП; *Sur_{ОП-ГГ}* – значение, полученное по формуле *Sur*, для пары преобразователей ОП-ГГ.

Значение Θ_{UR} не должно превышать 5,0 %.

7.4.6 Определение СКО результата измерения при поверке типовых гидрофонов

СКО наблюдений $S_0(M_{\Gamma})$ следует определять на всех частотах треть октавного ряда для гидрофонов из номенклатуры гидрофонов, поверяемых на Установке ВМФ-РЭ1/5В.

Для определения $S_0(M_{\Gamma})$ необходимо выполнить не менее N 6 градуировок гидрофона, заново устанавливая его на центральной штанге УКП2. Полученные значения $M_{\Gamma i}$ (i = 1 .. N) занести в таблицу 5. Рассчитать результат измерения чувствительности $M_{\Gamma cp}$, и СКО результата измерения $S_0(M_{\Gamma})$ по формулам:

$$\mathbf{M}_{\Gamma cp} = \frac{1}{N} \sum_{i}^{N} M_{\Gamma i}$$
$$\mathbf{M}_{\Gamma cp} = \sqrt{\frac{\sum_{i}^{N} \left(M_{\Gamma i} - M_{\Gamma cp} \right)^{2}}{N^{*} (N - 1)}} \cdot \frac{100\%}{M_{\Gamma cp}}$$

Полученные значения $M_{\Gamma cp}$, $S_o(M_{\Gamma})$ занести в таблицу 5.

Таблица 5

Гидрофон типа... заводской номер...

Частота, Гц	$M_{\Gamma 1}$		M _{ΓN}	M _{Γcp}	$S_o(M_{\Gamma})_{cp}$	
	a paratéria a	1224/11/12/02/11	- 4			

Значений $S_0(M_{\Gamma})$ не должно превышать 3,0 %.

7.4.7 Определение систематической погрешности Установки ВМФ-РЭ1/5В по результатам градуировки рабочего эталона (гидрофона) 1-го разряда.

Систематическую погрешность по результатам градуировки рабочего эталона 1-го разряда Q определяют по результатам измерений его чувствительности на всех частотах треть октавного ряда в рабочем диапазоне частот Установки ВМФ-РЭ1/5В путем много-кратных (на менее 10) переустановок рабочего эталона 1-го разряда на УКП2.

Систематическую погрешность Q вычислить по формуле:

$$\mathbf{Q} = (\mathbf{M}_{\mathbf{x}} - \mathbf{M}_{\mathbf{o}}) / \mathbf{M}_{\mathbf{o}} \times 100\%,$$

где M_x – среднее арифметическое значение чувствительности,

М_о - значение чувствительности рабочего эталона (гидрофона) 1-го разряда, взятое из его свидетельства о проверке.

При выполнении условия:

$$\mathbf{Q} \leq 0.8 \cdot \sqrt{\boldsymbol{\Delta}_{p_3}^2 + \boldsymbol{\Delta}^2}$$

Лист регистрации изменений

	Номера листов (страниц)						Входящий		
Изм.	Измененных	Замененных	новых	Аннулиро- ванных	Всего листов документа	Номер документа	№ сопро- водитель- ного документа	Подпись	Дата
						-40			

d / 1