1010

УТВЕРЖДАЮ

Начальник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

paridas on ag

В.Н. Храменков

2005 г.

инструкция

Осциллограф цифровой запоминающий TDS 1012 производства фирмы «Tektronix, (Yangzhong) Co., Ltd», КНР

МЕТОДИКА ПОВЕРКИ

г. Мытищи, 2005 г.

Введение

Настоящая методика распространяется на осциллограф цифровой запоминающий TDS 1012, заводской номер C032861, производства фирмы «Tektronix, (Yangzhong) Co., Ltd», КНР, (далее по тексту - осциллограф) и устанавливает порядок и объем его первичной и периодической поверки.

Межповерочный интервал составляет 1,5 года.

1 Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер	Проведение операции при	
	пункта до- кумента по поверке	первичной поверке	периодичес- кой поверке
1 Внешний осмотр	5.1	+	+
2 Опробование	5.2	+	+
3 Определение метрологических характеристик осциллографа	5.3	4.5.7	
3.1 Определение полосы пропускания амплитудно-частотной характеристики.	5.3.1	+	+
3.2 Определение погрешности измерения временных интервалов.	5.3.2	+	+
3.3 Определение погрешности коэффициентов отклонения.	5.3.3	+	+
3.4 Определение входного сопротивления каналов осциллографа.	5.3.4	+	+
3.5 Определение минимального уровня синхронизации.	5.3.5	+	+

2 Средства поверки

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2. Таблица 2

таолица 2		
Номер	Наименование и тип (условное обо-	Основные технические характеристики сред-
пункта	значение) основного или вспомога-	ства поверки
доку-	тельного средства поверки; обозначе-	
мента	ние нормативного документа, регла-	
по по-	ментирующего технические требова-	
верке	ния	
1	2	3
5.3.1	Установка измерительная К2С-62	Диапазон установки амплитуды от 40 мкВ
5.3.2		до 200 В (1 МОм вход); от 40 мкВ до 5 В
5.3.3		(50 Ом вход), погрешность $\pm 0,25$ %; диапазон
		установки периода повторения от 0,4 нс
		до 5 с, погрешность ±0,01 %.

5.3.5	Генератор импульсов точной амплитуды Г5-75	Диапазон установки амплитуды импульсов от 0,01 до 9,999 В; погрешность $\pm 0,01$ В; диапазон установки длительности импульсов от 50 нс до 1с; погрешность $\pm (10^{-3} \tau + 15 \text{hc})$.	
5.3.4	Измеритель L, C, R цифровой E7-8.	Диапазон измерений сопротивления от $0,001$ Ом до 10 МОм, погрешность измерений $\pm 0,001 R_x$.	

- 2.2 Вместо указанных в таблице 2 средств измерений разрешается применять другие аналогичные измерительные приборы, обеспечивающие измерения соответствующих параметров с требуемой точностью.
- 2.3 Применяемые средства поверки должны быть исправны, поверены и иметь свидетельства о поверке (отметки в формулярах или паспортах).

3 Требования безопасности

При проведении поверки должны быть соблюдены требования безопасности, предусмотренные "Правилами технической эксплуатации электроустановок потребителей", "Правилами техники безопасности при эксплуатации электроустановок потребителей", а также изложенные в руководстве по эксплуатации на приборы, в технической документации на применяемые при поверке рабочие эталоны и вспомогательное оборудование.

4 Условия поверки и подготовка к ней

4.1 При проведении поверки должны быть соблюдены следующие условия:

•	температура окружающего воздуха, °С	$23 \pm 5;$
•	относительная влажность воздуха, %	65 ± 15 ;
•	атмосферное давление, кПа (мм рт.ст.)	$100 \pm 4 \ (750 \pm 30);$
•	напряжение питающей сети, В	$220 \pm 4,4;$
•	частота питающей сети. Гп	50 ± 0.5 .

- 4.2 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
 - выдержать приборы в условиях, указанных в п. 4.1 в течение не менее 1 ч;
- выполнить операции, оговоренные в руководстве по эксплуатации на поверяемый весовой терминал по его подготовке к поверке;
- выполнить операции, оговоренные в технической документации на применяемые средства поверки по их подготовке к измерениям;
- осуществить предварительный прогрев приборов для установления их рабочего режима.

5 Проведение поверки

5.1 Внешний осмотр и проверка комплектности

5.1.1 При проведении внешнего осмотра и проверке комплектности должно быть установлено соответствие осциллографа следующим требованиям:

- наружная поверхность не должна иметь следов механических повреждений, которые могут влиять на работу прибора и его органов управления;
- разъемы должны быть чистыми;
- соединительные провода должны быть исправными;
- комплектность осциллографа должна соответствовать указанной в технической документа-
- габариты и масса осциллографа должны соответствовать указанной в технической документа-

5.2 Опробование осциллографа

5.2.1 Подготовить осциллограф к работе в соответствии с указаниями эксплуатационной документации;

Рис.1

- 5.2.2 Собрать измерительную схему в соответствии с рис. 1.
- 5.2.3 Установить на выходе калибратора Y установки К2С-62 последовательность прямоугольных импульсов с амплитудой 1 В и частотой следования 1 кГц. Установить число делений – 1 и импеданс 1 МОм.
 - 5.2.4 На осциллографе нажать кнопку AUTOSET.
- 5.2.5 На экране осциллографа должен наблюдаться меандр с периодом 1 мс и амплитудой 1 В.

5.3 Определение метрологических характеристик осциллографа

5.3.1 Определение полосы пропускания амплитудно-частотной характеристики

5.3.1.1 Собрать измерительную схему в соответствии с рис. 2.

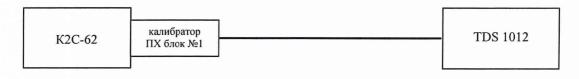


Рис.2

- 5.3.1.2 Кнопками группы «коэффициент» установить амплитуду импульса на выходе калибратора ПХ установки измерительной К2С-62 1В.
- 5.3.1.3 Нажать на осциллографе кнопку AUTOSET и дождаться появления на экране изображения прямоугольного импульса. Установить задержку в ноль и уменьшая коэффициент развертки до 5 нс/дел добиться изображения на экране фронта импульса.
- 5.3.1.4 C помощью встроенных автоматических измерений измерить длительность фронта импульса на экране осциллографа.

- 5.3.1.5 Уменьшая амплитуду испытательного импульса, повторить измерения по п.п. 5.3.1.2-5.3.1.4 для всех значений коэффициента отклонения, кроме 2 мВ/дел и 5 мВ/дел. Результаты измерений занести в протокол.
 - 5.3.1.6 Рассчитать полосу пропускания амплитудно-частотной характеристики по формуле

$$F_B = \frac{0.35}{t_r}$$

где, F_B – верхняя граничная частота полосы пропускания в гигагерцах;

 t_r – время нарастания ПХ в наносекундах.

- 5.3.1.7 Результаты поверки считать положительными, если верхняя граничная частота полосы пропускания не менее $100~\mathrm{M}\Gamma$ ц.
 - 5.3.2 Определение погрешности измерения временных интервалов.
 - 5.3.2.1 Собрать измерительную схему в соответствии с рис. 3.

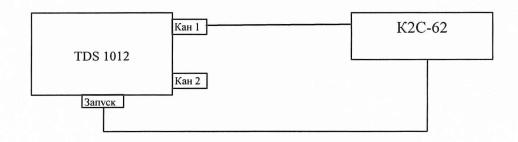


Рис. 3

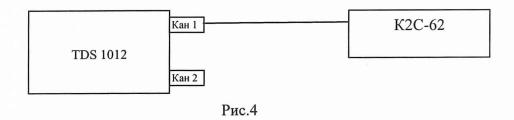
- 5.3.2.2 Установку К2С-62 включить в режим калибратора Х. Установить период следования временных меток 0,5 с/дел.
- 5.3.2.3 На осциллографе нажать AUTOSET и на экране получить устойчивое изображение временных меток. С помощью встроенных автоматических измерений произвести измерение периода сигнала.

Провести расчет погрешности измерения временных интервалов по формуле:

$$\Delta T = \left| T_{u_{3M}} - T_{y_{CM}} \right|, \text{ HC}$$

где Тизм - измеренное значение периода;

 $T_{\text{уст}}$ - истинное значение периода сигнала (по показаниям установки измерительной К2С-62).


Результаты измерений занести в протокол.

- 5.3.2.4 Повторить п.п. $5.3.2.2 \div 5.3.2.3$, устанавливая значения периода следования временных меток от 0.1 с/дел до 5 нс/дел.
 - 5.3.2.5 Результаты измерений занести в протокол.

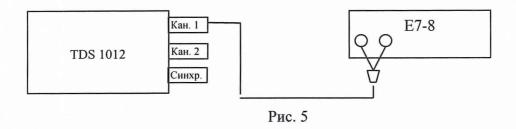
Результаты поверки считать положительными, если вычисленные значения погрешности измерения временных интервалов находятся в пределах $\pm \left[\frac{K_P}{250} + 50 \cdot 10^{-6} \cdot T_{u_{3M}} + 0,6 \right]$ нс в режиме без накопления и находятся в пределах $\pm \left[\frac{K_P}{250} + 50 \cdot 10^{-6} \cdot T_{u_{3M}} + 0,4 \right]$ нс в режиме выборки более 16.

5.3.3 Определение погрешности коэффициентов отклонения

5.3.3.1 Собрать измерительную схему в соответствии с рис. 4.

- 5.3.3.2 Установить коэффициент отклонения КАНАЛ 1 равным 1 В/дел, коэффициент развертки 500 мкс/дел, синхронизация внутренняя, режим работы развертки внутренний.
- 5.3.3.3 Установку К2С-62 включить в режим генерации импульсного напряжения с амплитудой плюс 5 В, число делений 4, импеданс 1 МОм.
- 5.3.3.4 Нажать кнопку AUTOSET на осциллографе и кнопку MEASURE для измерения амплитуды импульсного сигнала. Изменяя кнопкой ДЕВИАЦИЯ установки К2С-62 значение выходного напряжения установки К2С-62 добиться чтобы измеренная на осциллографе амплитуда сигнала была наиболее близка к 20 В.
- 5.3.3.5 Погрешность коэффициента отклонения определить по индикатору установки К2С-62 в процентах.
 - 5.3.3.6 Результаты занести в протокол.
- 5.3.3.7 Повторить п.п. $5.3.3.2 \div 5.3.3.6$ для остальных коэффициентов отклонения, изменяя напряжение на выходе установки K2C-62 в соответствии с табл. 3. (При числе делений равным 4, установленные коэффициенты отклонения на осциллографе и установке K2C-62 совпадают)

Таблица 3


Установленный коэффициент	Напряжение на входе К2С-62
отклонения	
5 В/ДЕЛ	20 B
2 В/ДЕЛ	8 B
1 В/ДЕЛ	4 B
500 мВ/ДЕЛ	2 B
200 мВ/ДЕЛ	800 мВ
100 мВ/ДЕЛ	400 мВ
50 мВ/ДЕЛ	200 мВ
20 мВ/ДЕЛ	80 мВ
10 мВ/ДЕЛ	40 мВ
5 мВ/ДЕЛ	20 мВ
2 мВ/ДЕЛ	4 мВ

5.3.3.8 Повторить п.п. 5.3.3.2.- 5.3.3.7. для второго канала осциллографа.

Результаты поверки считать положительными, если значения погрешности коэффициентов отклонения находятся в пределах \pm 3 % для коэффициентов отклонения от 10 мВ/дел до 5 В/дел и находятся в пределах \pm 4 % для коэффициентов отклонения 2 мВ/дел и 5 мВ/дел.

5.3.4 Определение входного сопротивления каналов осциллографа

5.3.4.1 Определение сопротивления входов каналов осциллографа, а также входа внешней синхронизации провести с помощью измерителя L,R,C цифрового Е7-8. Собрать измерительную схему в соответствии с рис. 5.

5.3.4.2 Измерить сопротивление обоих входов осциллографа и входа внешней синхронизации.

Результаты испытаний считать положительными, если значения величины сопротивления входов находятся в пределах (1 ± 0.02) МОм.

5.3.5 Определение минимального уровня синхронизации

5.3.5.1 Собрать измерительную схему в соответствии с рис. 6.

Рис. 6

- 5.3.5.2 Установить амплитуду импульсов на выходе Г5-75 1,1 В, период следования 1 мкс.
- 5.3.5.3 Установить источник запуска осциллографа КАНАЛ 1, коэффициент отклонения канала 1 равным 1 В/дел.
 - 5.3.5.4 Подать импульсный сигнал на вход канала 1 осциллографа.
- 5.3.5.5 Уменьшая амплитуду сигнала на выходе Г5-75 и подстраивая синхронизацию ручкой Уровень определить порог срыва синхронизации (амплитуда импульсов, при которой на данном коэффициенте отклонения сигнал не синхронизируется). Найденное значение занести в протокол.

- 5.3.5.6 Повторить п.п. $5.3.5.2 \div 5.3.5.5$ устанавливая соответственно амплитуду импульсов 550 мВ, 110 мВ и коэффициенты отклонения 0,5 В/дел, 0,1 В/дел.
 - 5.3.5.7 Повторить п.п. $5.3.5.2 \div 5.3.5.6$, установив период следования импульсов 50 нс
 - 5.3.5.8 Повторить п.п $5.3.5.2 \div 5.3.5.7$, установив источник запуска осциллографа канал 2.
- 5.3.5.9 Подать импульсный сигнал амплитудой 220 мВ на вход внешней синхронизации и уменьшая амплитуду импульсов определить порог срыва синхронизации. Найденное значение занести в протокол.

Результаты поверки считать положительными, если минимальный уровень синхронизации при использовании каналов осциллографа в качестве источника запуска не более 1 деления и 1,5 делений при частоте следования импульсов 1 МГц и 20 МГц соответственно, и не более 200 мВ при использовании в качестве источника запуска входа внешней синхронизации.

6 Оформление результатов поверки

- 6.1 При положительных результатах поверки на осциллограф цифровой запоминающий TDS 1012 (техническую документацию) наносится оттиск поверительного клейма или выдается свидетельство установленной формы.
- 6.2 Значения характеристик, определенные в процессе поверки при необходимости заносятся в документацию.
- 6.3 В случае отрицательных результатов поверки применение осциллографа цифрового запоминающего TDS 1012 запрещается, на него выдается извещение о непригодности к применению с указанием причин.

Заместитель начальника отдела ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

Младший научный сотрудник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

Этеми—И.М. Малай А.В. Клеопин А.В. Клеопин